vertexenum: Vertex enumeration

[ geometry, gpl, library, math ] [ Propose Tags ] [ Report a vulnerability ]

Vertex enumeration of convex polytopes given by linear inequalities.


[Skip to Readme]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

Versions [RSS] 0.1.0.0, 0.1.1.0, 1.0.0.0
Change log CHANGELOG.md
Dependencies base (>=4.7 && <5), containers (>=0.6.5.1 && <0.7), extra (>=1.7 && <1.8), monad-logger (>=0.3.40 && <0.4), simplex-method (>=0.2.0.0 && <0.3), vector-space (>=0.15 && <0.17) [details]
License GPL-3.0-only
Copyright 2023-2024 Stéphane Laurent
Author Stéphane Laurent
Maintainer laurent_step@outlook.fr
Category Math, Geometry
Home page https://github.com/stla/vertexenum#readme
Source repo head: git clone https://github.com/stla/vertexenum
Uploaded by stla at 2024-05-08T07:47:09Z
Distributions NixOS:1.0.0.0
Reverse Dependencies 1 direct, 0 indirect [details]
Downloads 123 total (8 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2024-05-08 [all 1 reports]

Readme for vertexenum-1.0.0.0

[back to package description]

vertexenum

Stack-lts Stack-nightly

Get the vertices of an intersection of halfspaces.


Consider the following system of linear inequalities:

\[\left\{\begin{matrix} -5 & \leqslant & x & \leqslant & 4 \\ -5 & \leqslant & y & \leqslant & 3-x \\ -10 & \leqslant & z & \leqslant & 6-2x-y \end{matrix}.\right.\]

Each inequality defines a halfspace. The intersection of the six halfspaces is a convex polytope. The vertexenum function can calculate the vertices of this polytope:

import Data.VectorSpace     ( 
                              AdditiveGroup( (^+^), (^-^) )
                            , VectorSpace( (*^) ) 
                            )
import Geometry.VertexEnum

inequalities :: [Constraint Rational]
inequalities =
  [ x .>= (-5)         -- shortcut for `x .>=. cst (-5)`
  , x .<=  4
  , y .>= (-5)
  , y .<=. cst 3 ^-^ x -- we need `cst` here
  , z .>= (-10)
  , z .<=. cst 6 ^-^ 2*^x ^-^ y ]
  where
    x = newVar 1
    y = newVar 2
    z = newVar 3

vertexenum constraints Nothing

The type of the second argument of vertexenum is Maybe [Double]. If this argument is Just point, then point must be the coordinates of a point interior to the polytope. If this argument is Nothing, an interior point is automatically calculated. You can get it with the interiorPoint function. It is easy to mentally get an interior point for the above example, but in general this is not an easy problem.