{-# LANGUAGE ScopedTypeVariables #-}
module Agda.TypeChecking.Level.Solve where
import Control.Monad
import Control.Monad.Except
import qualified Data.IntMap as IntMap
import Data.Maybe
import Agda.Interaction.Options
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.TypeChecking.Level
import Agda.TypeChecking.MetaVars.Mention
import Agda.TypeChecking.Monad
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Telescope
import Agda.Utils.Functor
import Agda.Utils.Monad
defaultOpenLevelsToZero :: (PureTCM m, MonadMetaSolver m) => m a -> m a
defaultOpenLevelsToZero :: forall (m :: * -> *) a.
(PureTCM m, MonadMetaSolver m) =>
m a -> m a
defaultOpenLevelsToZero m a
f = m Bool -> m a -> m a -> m a
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifNotM (PragmaOptions -> Bool
optCumulativity (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions) m a
f (m a -> m a) -> m a -> m a
forall a b. (a -> b) -> a -> b
$ do
(a
result , MetaStore
newMetas) <- m a -> m (a, MetaStore)
forall (m :: * -> *) a. ReadTCState m => m a -> m (a, MetaStore)
metasCreatedBy m a
f
MetaStore -> m ()
forall (m :: * -> *).
(PureTCM m, MonadMetaSolver m) =>
MetaStore -> m ()
defaultLevelsToZero MetaStore
newMetas
a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
result
defaultLevelsToZero :: forall m. (PureTCM m, MonadMetaSolver m) => MetaStore -> m ()
defaultLevelsToZero :: forall (m :: * -> *).
(PureTCM m, MonadMetaSolver m) =>
MetaStore -> m ()
defaultLevelsToZero MetaStore
xs = [MetaId] -> m ()
loop ([MetaId] -> m ()) -> m [MetaId] -> m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< [MetaId] -> m [MetaId]
openLevelMetas ((Key -> MetaId) -> [Key] -> [MetaId]
forall a b. (a -> b) -> [a] -> [b]
map Key -> MetaId
MetaId ([Key] -> [MetaId]) -> [Key] -> [MetaId]
forall a b. (a -> b) -> a -> b
$ MetaStore -> [Key]
forall a. IntMap a -> [Key]
IntMap.keys MetaStore
xs)
where
loop :: [MetaId] -> m ()
loop :: [MetaId] -> m ()
loop [MetaId]
xs = do
let isOpen :: MetaId -> f Bool
isOpen MetaId
x = MetaInstantiation -> Bool
isOpenMeta (MetaInstantiation -> Bool)
-> (MetaVariable -> MetaInstantiation) -> MetaVariable -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MetaVariable -> MetaInstantiation
mvInstantiation (MetaVariable -> Bool) -> f MetaVariable -> f Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> f MetaVariable
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupMeta MetaId
x
[MetaId]
xs <- (MetaId -> m Bool) -> [MetaId] -> m [MetaId]
forall (m :: * -> *) a.
Applicative m =>
(a -> m Bool) -> [a] -> m [a]
filterM MetaId -> m Bool
forall {f :: * -> *}.
(MonadFail f, ReadTCState f) =>
MetaId -> f Bool
isOpen [MetaId]
xs
[Type]
allMetaTypes <- m [MetaId]
forall (m :: * -> *). ReadTCState m => m [MetaId]
getOpenMetas m [MetaId] -> ([MetaId] -> m [Type]) -> m [Type]
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (MetaId -> m Type) -> [MetaId] -> m [Type]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse MetaId -> m Type
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m Type
metaType
let notInTypeOfMeta :: MetaId -> Bool
notInTypeOfMeta MetaId
x = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ MetaId -> [Type] -> Bool
forall t. MentionsMeta t => MetaId -> t -> Bool
mentionsMeta MetaId
x [Type]
allMetaTypes
[Bool]
progress <- [MetaId] -> (MetaId -> m Bool) -> m [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [MetaId]
xs ((MetaId -> m Bool) -> m [Bool]) -> (MetaId -> m Bool) -> m [Bool]
forall a b. (a -> b) -> a -> b
$ \MetaId
x -> do
[ProblemConstraint]
cs <- (ProblemConstraint -> Bool)
-> [ProblemConstraint] -> [ProblemConstraint]
forall a. (a -> Bool) -> [a] -> [a]
filter (MetaId -> ProblemConstraint -> Bool
forall t. MentionsMeta t => MetaId -> t -> Bool
mentionsMeta MetaId
x) ([ProblemConstraint] -> [ProblemConstraint])
-> m [ProblemConstraint] -> m [ProblemConstraint]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m [ProblemConstraint]
forall (m :: * -> *). ReadTCState m => m [ProblemConstraint]
getAllConstraints
if | MetaId -> Bool
notInTypeOfMeta MetaId
x , (ProblemConstraint -> Bool) -> [ProblemConstraint] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (ProblemConstraint -> MetaId -> Bool
`isUpperBoundFor` MetaId
x) [ProblemConstraint]
cs -> do
MetaVariable
m <- MetaId -> m MetaVariable
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupMeta MetaId
x
TelV Tele (Dom Type)
tel Type
t <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView (Type -> m (TelV Type)) -> m Type -> m (TelV Type)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MetaId -> m Type
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m Type
metaType MetaId
x
Tele (Dom Type) -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
tel (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ CompareDirection -> MetaId -> Args -> Term -> CompareAs -> m ()
forall (m :: * -> *).
MonadMetaSolver m =>
CompareDirection -> MetaId -> Args -> Term -> CompareAs -> m ()
assignV CompareDirection
DirEq MetaId
x (Tele (Dom Type) -> Args
forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
tel) (Level -> Term
Level (Level -> Term) -> Level -> Term
forall a b. (a -> b) -> a -> b
$ Integer -> Level
ClosedLevel Integer
0) (Type -> CompareAs
AsTermsOf Type
t)
Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
m Bool -> (TCErr -> m Bool) -> m Bool
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \TCErr
_ -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
| Bool
otherwise -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when ([Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or [Bool]
progress) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ ([MetaId] -> m ()
loop [MetaId]
xs)
openLevelMetas :: [MetaId] -> m [MetaId]
openLevelMetas :: [MetaId] -> m [MetaId]
openLevelMetas [MetaId]
xs = (MetaId -> m Bool) -> [MetaId] -> m [MetaId]
forall (m :: * -> *) a.
Applicative m =>
(a -> m Bool) -> [a] -> m [a]
filterM (Maybe InteractionId -> Bool
forall a. Maybe a -> Bool
isNothing (Maybe InteractionId -> Bool)
-> (MetaId -> m (Maybe InteractionId)) -> MetaId -> m Bool
forall (m :: * -> *) b c a.
Functor m =>
(b -> c) -> (a -> m b) -> a -> m c
<.> MetaId -> m (Maybe InteractionId)
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m (Maybe InteractionId)
isInteractionMeta) [MetaId]
xs
m [MetaId] -> ([MetaId] -> m [MetaId]) -> m [MetaId]
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (MetaId -> m Bool) -> [MetaId] -> m [MetaId]
forall (m :: * -> *) a.
Applicative m =>
(a -> m Bool) -> [a] -> m [a]
filterM ((DoGeneralize -> Bool) -> m DoGeneralize -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (DoGeneralize -> DoGeneralize -> Bool
forall a. Eq a => a -> a -> Bool
== DoGeneralize
NoGeneralize) (m DoGeneralize -> m Bool)
-> (MetaId -> m DoGeneralize) -> MetaId -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. MetaId -> m DoGeneralize
forall (m :: * -> *).
(ReadTCState m, MonadFail m) =>
MetaId -> m DoGeneralize
isGeneralizableMeta)
m [MetaId] -> ([MetaId] -> m [MetaId]) -> m [MetaId]
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (MetaId -> m Bool) -> [MetaId] -> m [MetaId]
forall (m :: * -> *) a.
Applicative m =>
(a -> m Bool) -> [a] -> m [a]
filterM MetaId -> m Bool
isLevelMeta
isLevelMeta :: MetaId -> m Bool
isLevelMeta :: MetaId -> m Bool
isLevelMeta MetaId
x = do
TelV Tele (Dom Type)
tel Type
t <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView (Type -> m (TelV Type)) -> m Type -> m (TelV Type)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MetaId -> m Type
forall (m :: * -> *).
(MonadFail m, ReadTCState m) =>
MetaId -> m Type
metaType MetaId
x
Tele (Dom Type) -> m Bool -> m Bool
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
tel (m Bool -> m Bool) -> m Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ Type -> m Bool
forall (m :: * -> *). PureTCM m => Type -> m Bool
isLevelType Type
t
isUpperBoundFor :: ProblemConstraint -> MetaId -> Bool
isUpperBoundFor :: ProblemConstraint -> MetaId -> Bool
isUpperBoundFor ProblemConstraint
c MetaId
x = case Closure Constraint -> Constraint
forall a. Closure a -> a
clValue (ProblemConstraint -> Closure Constraint
theConstraint ProblemConstraint
c) of
LevelCmp Comparison
CmpLeq Level
l Level
u -> Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ MetaId -> Level -> Bool
forall t. MentionsMeta t => MetaId -> t -> Bool
mentionsMeta MetaId
x Level
u
Constraint
_ -> Bool
False