{-# LANGUAGE NondecreasingIndentation #-}

-- | Unification algorithm for specializing datatype indices, as described in
--     \"Unifiers as Equivalences: Proof-Relevant Unification of Dependently
--     Typed Data\" by Jesper Cockx, Dominique Devriese, and Frank Piessens
--     (ICFP 2016).
--
--   This is the unification algorithm used for checking the left-hand side
--   of clauses (see @Agda.TypeChecking.Rules.LHS@), coverage checking (see
--   @Agda.TypeChecking.Coverage@) and indirectly also for interactive case
--   splitting (see @Agda.Interaction.MakeCase@).
--
--   A unification problem (of type @UnifyState@) consists of:
--
--   1. A telescope @varTel@ of free variables, some or all of which are
--      flexible (as indicated by @flexVars@).
--
--   2. A telescope @eqTel@ containing the types of the equations.
--
--   3. Left- and right-hand sides for each equation:
--      @varTel ⊢ eqLHS : eqTel@ and @varTel ⊢ eqRHS : eqTel@.
--
--   The unification algorithm can end in three different ways:
--   (type @UnificationResult@):
--
--   - A *positive success* @Unifies (tel, sigma, ps)@ with @tel ⊢ sigma : varTel@,
--     @tel ⊢ eqLHS [ varTel ↦ sigma ] ≡ eqRHS [ varTel ↦ sigma ] : eqTel@,
--     and @tel ⊢ ps : eqTel@. In this case, @sigma;ps@ is an *equivalence*
--     between the telescopes @tel@ and @varTel(eqLHS ≡ eqRHS)@.
--
--   - A *negative success* @NoUnify err@ means that a conflicting equation
--     was found (e.g an equation between two distinct constructors or a cycle).
--
--   - A *failure* @UnifyStuck err@ means that the unifier got stuck.
--
--   The unification algorithm itself consists of two parts:
--
--   1. A *unification strategy* takes a unification problem and produces a
--      list of suggested unification rules (of type @UnifyStep@). Strategies
--      can be constructed by composing simpler strategies (see for example the
--      definition of @completeStrategyAt@).
--
--   2. The *unification engine* @unifyStep@ takes a unification rule and tries
--      to apply it to the given state, writing the result to the UnifyOutput
--      on a success.
--
--   The unification steps (of type @UnifyStep@) are the following:
--
--   - *Deletion* removes a reflexive equation @u =?= v : a@ if the left- and
--     right-hand side @u@ and @v@ are (definitionally) equal. This rule results
--     in a failure if --without-K is enabled (see \"Pattern Matching Without K\"
--     by Jesper Cockx, Dominique Devriese, and Frank Piessens (ICFP 2014).
--
--   - *Solution* solves an equation if one side is (eta-equivalent to) a
--     flexible variable. In case both sides are flexible variables, the
--     unification strategy makes a choice according to the @chooseFlex@
--     function in @Agda.TypeChecking.Rules.LHS.Problem@.
--
--   - *Injectivity* decomposes an equation of the form
--     @c us =?= c vs : D pars is@ where @c : Δc → D pars js@ is a constructor
--     of the inductive datatype @D@ into a sequence of equations
--     @us =?= vs : delta@. In case @D@ is an indexed datatype,
--     *higher-dimensional unification* is applied (see below).
--
--   - *Conflict* detects absurd equations of the form
--     @c₁ us =?= c₂ vs : D pars is@ where @c₁@ and @c₂@ are two distinct
--     constructors of the datatype @D@.
--
--   - *Cycle* detects absurd equations of the form @x =?= v : D pars is@ where
--     @x@ is a variable of the datatype @D@ that occurs strongly rigid in @v@.
--
--   - *EtaExpandVar* eta-expands a single flexible variable @x : R@ where @R@
--     is a (eta-expandable) record type, replacing it by one variable for each
--     field of @R@.
--
--   - *EtaExpandEquation* eta-expands an equation @u =?= v : R@ where @R@ is a
--     (eta-expandable) record type, replacing it by one equation for each field
--     of @R@. The left- and right-hand sides of these equations are the
--     projections of @u@ and @v@.
--
--   - *LitConflict* detects absurd equations of the form @l₁ =?= l₂ : A@ where
--     @l₁@ and @l₂@ are distinct literal terms.
--
--   - *StripSizeSuc* simplifies an equation of the form
--     @sizeSuc x =?= sizeSuc y : Size@ to @x =?= y : Size@.
--
--   - *SkipIrrelevantEquation@ removes an equation between irrelevant terms.
--
--   - *TypeConInjectivity* decomposes an equation of the form
--     @D us =?= D vs : Set i@ where @D@ is a datatype. This rule is only used
--     if --injective-type-constructors is enabled.
--
--   Higher-dimensional unification (new, does not yet appear in any paper):
--   If an equation of the form @c us =?= c vs : D pars is@ is encountered where
--   @c : Δc → D pars js@ is a constructor of an indexed datatype
--   @D pars : Φ → Set ℓ@, it is in general unsound to just simplify this
--   equation to @us =?= vs : Δc@. For this reason, the injectivity rule in the
--   paper restricts the indices @is@ to be distinct variables that are bound in
--   the telescope @eqTel@. But we can be more general by introducing new
--   variables @ks@ to the telescope @eqTel@ and equating these to @is@:
--   @
--       Δ₁(x : D pars is)Δ₂
--        ≃
--       Δ₁(ks : Φ)(x : D pars ks)(ps : is ≡Φ ks)Δ₂
--   @
--   Since @ks@ are distinct variables, it's now possible to apply injectivity
--   to the equation @x@, resulting in the following new equation telescope:
--   @
--     Δ₁(ys : Δc)(ps : is ≡Φ js[Δc ↦ ys])Δ₂
--   @
--   Now we can solve the equations @ps@ by recursively calling the unification
--   algorithm with flexible variables @Δ₁(ys : Δc)@. This is called
--   *higher-dimensional unification* since we are unifying equality proofs
--   rather than terms. If the higher-dimensional unification succeeds, the
--   resulting telescope serves as the new equation telescope for the original
--   unification problem.

module Agda.TypeChecking.Rules.LHS.Unify
  ( UnificationResult
  , UnificationResult'(..)
  , unifyIndices ) where

import Prelude hiding (null)

import Control.Monad
import Control.Monad.State
import Control.Monad.Writer (WriterT(..), MonadWriter(..))
import Control.Monad.Except

import Data.Semigroup hiding (Arg)
import qualified Data.List as List
import qualified Data.IntSet as IntSet
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)

import qualified Agda.Benchmarking as Bench

import Agda.Interaction.Options (optInjectiveTypeConstructors)

import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.Syntax.Literal

import Agda.TypeChecking.Monad
import qualified Agda.TypeChecking.Monad.Benchmark as Bench
import Agda.TypeChecking.Conversion.Pure
import Agda.TypeChecking.Constraints
import Agda.TypeChecking.Datatypes
import Agda.TypeChecking.Irrelevance
import Agda.TypeChecking.Level (reallyUnLevelView)
import Agda.TypeChecking.Reduce
import qualified Agda.TypeChecking.Patterns.Match as Match
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.Free
import Agda.TypeChecking.Free.Precompute
import Agda.TypeChecking.Free.Reduce
import Agda.TypeChecking.Records

import Agda.TypeChecking.Rules.LHS.Problem

import Agda.Utils.Benchmark
import Agda.Utils.Either
import Agda.Utils.Function
import Agda.Utils.Functor
import Agda.Utils.Lens
import Agda.Utils.List
import Agda.Utils.ListT
import Agda.Utils.Maybe
import Agda.Utils.Monad
import Agda.Utils.Null
import Agda.Utils.PartialOrd
import Agda.Utils.Permutation
import Agda.Utils.Singleton
import Agda.Utils.Size
import Agda.Utils.Tuple

import Agda.Utils.Impossible

-- | Result of 'unifyIndices'.
type UnificationResult = UnificationResult'
  ( Telescope                  -- @tel@
  , PatternSubstitution        -- @sigma@ s.t. @tel ⊢ sigma : varTel@
  , [NamedArg DeBruijnPattern] -- @ps@    s.t. @tel ⊢ ps    : eqTel @
  )

data UnificationResult' a
  = Unifies  a                        -- ^ Unification succeeded.
  | NoUnify  NegativeUnification      -- ^ Terms are not unifiable.
  | UnifyBlocked Blocker              -- ^ Unification got blocked on a metavariable
  | UnifyStuck   [UnificationFailure] -- ^ Some other error happened, unification got stuck.
  deriving (Int -> UnificationResult' a -> ShowS
[UnificationResult' a] -> ShowS
UnificationResult' a -> String
(Int -> UnificationResult' a -> ShowS)
-> (UnificationResult' a -> String)
-> ([UnificationResult' a] -> ShowS)
-> Show (UnificationResult' a)
forall a. Show a => Int -> UnificationResult' a -> ShowS
forall a. Show a => [UnificationResult' a] -> ShowS
forall a. Show a => UnificationResult' a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [UnificationResult' a] -> ShowS
$cshowList :: forall a. Show a => [UnificationResult' a] -> ShowS
show :: UnificationResult' a -> String
$cshow :: forall a. Show a => UnificationResult' a -> String
showsPrec :: Int -> UnificationResult' a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> UnificationResult' a -> ShowS
Show, (forall a b.
 (a -> b) -> UnificationResult' a -> UnificationResult' b)
-> (forall a b. a -> UnificationResult' b -> UnificationResult' a)
-> Functor UnificationResult'
forall a b. a -> UnificationResult' b -> UnificationResult' a
forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> UnificationResult' b -> UnificationResult' a
$c<$ :: forall a b. a -> UnificationResult' b -> UnificationResult' a
fmap :: forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
$cfmap :: forall a b.
(a -> b) -> UnificationResult' a -> UnificationResult' b
Functor, (forall m. Monoid m => UnificationResult' m -> m)
-> (forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m)
-> (forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m)
-> (forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b)
-> (forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b)
-> (forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b)
-> (forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b)
-> (forall a. (a -> a -> a) -> UnificationResult' a -> a)
-> (forall a. (a -> a -> a) -> UnificationResult' a -> a)
-> (forall a. UnificationResult' a -> [a])
-> (forall a. UnificationResult' a -> Bool)
-> (forall a. UnificationResult' a -> Int)
-> (forall a. Eq a => a -> UnificationResult' a -> Bool)
-> (forall a. Ord a => UnificationResult' a -> a)
-> (forall a. Ord a => UnificationResult' a -> a)
-> (forall a. Num a => UnificationResult' a -> a)
-> (forall a. Num a => UnificationResult' a -> a)
-> Foldable UnificationResult'
forall a. Eq a => a -> UnificationResult' a -> Bool
forall a. Num a => UnificationResult' a -> a
forall a. Ord a => UnificationResult' a -> a
forall m. Monoid m => UnificationResult' m -> m
forall a. UnificationResult' a -> Bool
forall a. UnificationResult' a -> Int
forall a. UnificationResult' a -> [a]
forall a. (a -> a -> a) -> UnificationResult' a -> a
forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => UnificationResult' a -> a
$cproduct :: forall a. Num a => UnificationResult' a -> a
sum :: forall a. Num a => UnificationResult' a -> a
$csum :: forall a. Num a => UnificationResult' a -> a
minimum :: forall a. Ord a => UnificationResult' a -> a
$cminimum :: forall a. Ord a => UnificationResult' a -> a
maximum :: forall a. Ord a => UnificationResult' a -> a
$cmaximum :: forall a. Ord a => UnificationResult' a -> a
elem :: forall a. Eq a => a -> UnificationResult' a -> Bool
$celem :: forall a. Eq a => a -> UnificationResult' a -> Bool
length :: forall a. UnificationResult' a -> Int
$clength :: forall a. UnificationResult' a -> Int
null :: forall a. UnificationResult' a -> Bool
$cnull :: forall a. UnificationResult' a -> Bool
toList :: forall a. UnificationResult' a -> [a]
$ctoList :: forall a. UnificationResult' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
foldr1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> UnificationResult' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> UnificationResult' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> UnificationResult' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> UnificationResult' a -> m
fold :: forall m. Monoid m => UnificationResult' m -> m
$cfold :: forall m. Monoid m => UnificationResult' m -> m
Foldable, Functor UnificationResult'
Foldable UnificationResult'
Functor UnificationResult'
-> Foldable UnificationResult'
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> UnificationResult' a -> f (UnificationResult' b))
-> (forall (f :: * -> *) a.
    Applicative f =>
    UnificationResult' (f a) -> f (UnificationResult' a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> UnificationResult' a -> m (UnificationResult' b))
-> (forall (m :: * -> *) a.
    Monad m =>
    UnificationResult' (m a) -> m (UnificationResult' a))
-> Traversable UnificationResult'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a)
forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
sequence :: forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a)
$csequence :: forall (m :: * -> *) a.
Monad m =>
UnificationResult' (m a) -> m (UnificationResult' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> UnificationResult' a -> m (UnificationResult' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
UnificationResult' (f a) -> f (UnificationResult' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> UnificationResult' a -> f (UnificationResult' b)
Traversable)

-- | Unify indices.
--
--   In @unifyIndices gamma flex a us vs@,
--
--   * @us@ and @vs@ are the argument lists to unify, eliminating type @a@.
--
--   * @gamma@ is the telescope of free variables in @us@ and @vs@.
--
--   * @flex@ is the set of flexible (instantiable) variabes in @us@ and @vs@.
--
--   The result is the most general unifier of @us@ and @vs@.
unifyIndices
  :: (PureTCM m, MonadBench m, BenchPhase m ~ Bench.Phase)
  => Telescope     -- ^ @gamma@
  -> FlexibleVars  -- ^ @flex@
  -> Type          -- ^ @a@
  -> Args          -- ^ @us@
  -> Args          -- ^ @vs@
  -> m UnificationResult
unifyIndices :: forall (m :: * -> *).
(PureTCM m, MonadBench m, BenchPhase m ~ Phase) =>
Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> m UnificationResult
unifyIndices Telescope
tel FlexibleVars
flex Type
a [Arg Term]
us [Arg Term]
vs =
  Account (BenchPhase m)
-> m UnificationResult -> m UnificationResult
forall (m :: * -> *) c.
MonadBench m =>
Account (BenchPhase m) -> m c -> m c
Bench.billTo [BenchPhase m
Phase
Bench.Typing, BenchPhase m
Phase
Bench.CheckLHS, BenchPhase m
Phase
Bench.UnifyIndices] (m UnificationResult -> m UnificationResult)
-> m UnificationResult -> m UnificationResult
forall a b. (a -> b) -> a -> b
$
    Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> m UnificationResult
forall (m :: * -> *).
PureTCM m =>
Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> m UnificationResult
unifyIndices' Telescope
tel FlexibleVars
flex Type
a [Arg Term]
us [Arg Term]
vs

unifyIndices'
  :: (PureTCM m)
  => Telescope     -- ^ @gamma@
  -> FlexibleVars  -- ^ @flex@
  -> Type          -- ^ @a@
  -> Args          -- ^ @us@
  -> Args          -- ^ @vs@
  -> m UnificationResult
unifyIndices' :: forall (m :: * -> *).
PureTCM m =>
Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> m UnificationResult
unifyIndices' Telescope
tel FlexibleVars
flex Type
a [] [] = UnificationResult -> m UnificationResult
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult -> m UnificationResult)
-> UnificationResult -> m UnificationResult
forall a b. (a -> b) -> a -> b
$ (Telescope, PatternSubstitution, [NamedArg (Pattern' DBPatVar)])
-> UnificationResult
forall a. a -> UnificationResult' a
Unifies (Telescope
tel, PatternSubstitution
forall a. Substitution' a
idS, [])
unifyIndices' Telescope
tel FlexibleVars
flex Type
a [Arg Term]
us [Arg Term]
vs = do
    String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
10 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$
      [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCMT IO Doc
"unifyIndices"
          , (TCMT IO Doc
"tel  =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
tel
          , (TCMT IO Doc
"flex =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> String -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [Int] -> String
forall a. Show a => a -> String
show ([Int] -> String) -> [Int] -> String
forall a b. (a -> b) -> a -> b
$ (FlexibleVar Int -> Int) -> FlexibleVars -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar FlexibleVars
flex
          , (TCMT IO Doc
"a    =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => m Doc -> m Doc
parens (Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a)
          , (TCMT IO Doc
"us   =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList ([TCMT IO Doc] -> TCMT IO Doc) -> [TCMT IO Doc] -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ (Arg Term -> TCMT IO Doc) -> [Arg Term] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
us
          , (TCMT IO Doc
"vs   =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Int -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList ([TCMT IO Doc] -> TCMT IO Doc) -> [TCMT IO Doc] -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ (Arg Term -> TCMT IO Doc) -> [Arg Term] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
vs
          ]
    UnifyState
initialState    <- Telescope
-> FlexibleVars -> Type -> [Arg Term] -> [Arg Term] -> m UnifyState
forall (m :: * -> *).
PureTCM m =>
Telescope
-> FlexibleVars -> Type -> [Arg Term] -> [Arg Term] -> m UnifyState
initUnifyState Telescope
tel FlexibleVars
flex Type
a [Arg Term]
us [Arg Term]
vs
    String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
20 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"initial unifyState:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> UnifyState -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM UnifyState
initialState
    String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
70 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"initial unifyState:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (UnifyState -> String
forall a. Show a => a -> String
show UnifyState
initialState)
    (UnificationResult' UnifyState
result,UnifyOutput
output) <- UnifyLogT m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState, UnifyOutput)
forall (m :: * -> *) a. UnifyLogT m a -> m (a, UnifyOutput)
runUnifyLogT (UnifyLogT m (UnificationResult' UnifyState)
 -> m (UnificationResult' UnifyState, UnifyOutput))
-> UnifyLogT m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState, UnifyOutput)
forall a b. (a -> b) -> a -> b
$ UnifyState
-> UnifyStrategy -> UnifyLogT m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
unify UnifyState
initialState UnifyStrategy
rightToLeftStrategy
    let ps :: [NamedArg (Pattern' DBPatVar)]
ps = Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (UnifyOutput -> PatternSubstitution
unifyProof UnifyOutput
output) ([NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs (UnifyState -> Telescope
eqTel UnifyState
initialState)
    UnificationResult -> m UnificationResult
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult -> m UnificationResult)
-> UnificationResult -> m UnificationResult
forall a b. (a -> b) -> a -> b
$ (UnifyState
 -> (Telescope, PatternSubstitution,
     [NamedArg (Pattern' DBPatVar)]))
-> UnificationResult' UnifyState -> UnificationResult
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\UnifyState
s -> (UnifyState -> Telescope
varTel UnifyState
s , UnifyOutput -> PatternSubstitution
unifySubst UnifyOutput
output , [NamedArg (Pattern' DBPatVar)]
ps)) UnificationResult' UnifyState
result

----------------------------------------------------
-- Equalities
----------------------------------------------------

data Equality = Equal
  { Equality -> Dom' Term Type
_eqType  :: Dom Type
  , Equality -> Term
_eqLeft  :: Term
  , Equality -> Term
_eqRight :: Term
  }

instance Reduce Equality where
  reduce' :: Equality -> ReduceM Equality
reduce' (Equal Dom' Term Type
a Term
u Term
v) = Dom' Term Type -> Term -> Term -> Equality
Equal (Dom' Term Type -> Term -> Term -> Equality)
-> ReduceM (Dom' Term Type) -> ReduceM (Term -> Term -> Equality)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term Type -> ReduceM (Dom' Term Type)
forall t. Reduce t => t -> ReduceM t
reduce' Dom' Term Type
a ReduceM (Term -> Term -> Equality)
-> ReduceM Term -> ReduceM (Term -> Equality)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
u ReduceM (Term -> Equality) -> ReduceM Term -> ReduceM Equality
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> ReduceM Term
forall t. Reduce t => t -> ReduceM t
reduce' Term
v

eqConstructorForm :: HasBuiltins m => Equality -> m Equality
eqConstructorForm :: forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqConstructorForm (Equal Dom' Term Type
a Term
u Term
v) = Dom' Term Type -> Term -> Term -> Equality
Equal Dom' Term Type
a (Term -> Term -> Equality) -> m Term -> m (Term -> Equality)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
constructorForm Term
u m (Term -> Equality) -> m Term -> m Equality
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
constructorForm Term
v

eqUnLevel :: HasBuiltins m => Equality -> m Equality
eqUnLevel :: forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equal Dom' Term Type
a Term
u Term
v) = Dom' Term Type -> Term -> Term -> Equality
Equal Dom' Term Type
a (Term -> Term -> Equality) -> m Term -> m (Term -> Equality)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
unLevel Term
u m (Term -> Equality) -> m Term -> m Equality
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Term -> m Term
unLevel Term
v
  where
    unLevel :: Term -> m Term
unLevel (Level Level
l) = Level -> m Term
forall (m :: * -> *). HasBuiltins m => Level -> m Term
reallyUnLevelView Level
l
    unLevel Term
u         = Term -> m Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
u

----------------------------------------------------
-- Unify state
----------------------------------------------------

data UnifyState = UState
  { UnifyState -> Telescope
varTel   :: Telescope     -- ^ Don't reduce!
  , UnifyState -> FlexibleVars
flexVars :: FlexibleVars
  , UnifyState -> Telescope
eqTel    :: Telescope     -- ^ Can be reduced eagerly.
  , UnifyState -> [Arg Term]
eqLHS    :: [Arg Term]    -- ^ Ends up in dot patterns (should not be reduced eagerly).
  , UnifyState -> [Arg Term]
eqRHS    :: [Arg Term]    -- ^ Ends up in dot patterns (should not be reduced eagerly).
  } deriving (Int -> UnifyState -> ShowS
[UnifyState] -> ShowS
UnifyState -> String
(Int -> UnifyState -> ShowS)
-> (UnifyState -> String)
-> ([UnifyState] -> ShowS)
-> Show UnifyState
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [UnifyState] -> ShowS
$cshowList :: [UnifyState] -> ShowS
show :: UnifyState -> String
$cshow :: UnifyState -> String
showsPrec :: Int -> UnifyState -> ShowS
$cshowsPrec :: Int -> UnifyState -> ShowS
Show)
-- Issues #3578 and #4125: avoid unnecessary reduction in unifier.

lensVarTel   :: Lens' Telescope UnifyState
lensVarTel :: Lens' Telescope UnifyState
lensVarTel   Telescope -> f Telescope
f UnifyState
s = Telescope -> f Telescope
f (UnifyState -> Telescope
varTel UnifyState
s) f Telescope -> (Telescope -> UnifyState) -> f UnifyState
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Telescope
tel -> UnifyState
s { varTel :: Telescope
varTel = Telescope
tel }
--UNUSED Liang-Ting Chen 2019-07-16
--lensFlexVars :: Lens' FlexibleVars UnifyState
--lensFlexVars f s = f (flexVars s) <&> \ flex -> s { flexVars = flex }

lensEqTel    :: Lens' Telescope UnifyState
lensEqTel :: Lens' Telescope UnifyState
lensEqTel    Telescope -> f Telescope
f UnifyState
s = Telescope -> f Telescope
f (UnifyState -> Telescope
eqTel UnifyState
s) f Telescope -> (Telescope -> UnifyState) -> f UnifyState
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Telescope
x -> UnifyState
s { eqTel :: Telescope
eqTel = Telescope
x }

--UNUSED Liang-Ting Chen 2019-07-16
--lensEqLHS    :: Lens' Args UnifyState
--lensEqLHS    f s = f (eqLHS s) <&> \ x -> s { eqLHS = x }

--UNUSED Liang-Ting Chen 2019-07-16
--lensEqRHS    :: Lens' Args UnifyState
--lensEqRHS    f s = f (eqRHS s) <&> \ x -> s { eqRHS = x }

-- UNUSED Andreas, 2019-10-14
-- instance Reduce UnifyState where
--   reduce' (UState var flex eq lhs rhs) =
--     UState <$> reduce' var
--            <*> pure flex
--            <*> reduce' eq
--            <*> reduce' lhs
--            <*> reduce' rhs

-- Andreas, 2019-10-14, issues #3578 and #4125:
-- | Don't ever reduce the whole 'varTel', as it will destroy
-- readability of the context in interactive editing!
-- To make sure this insight is not lost, the following
-- dummy instance should prevent a proper 'Reduce' instance for 'UnifyState'.
instance Reduce UnifyState where
  reduce' :: UnifyState -> ReduceM UnifyState
reduce' = UnifyState -> ReduceM UnifyState
forall a. HasCallStack => a
__IMPOSSIBLE__

--UNUSED Liang-Ting Chen 2019-07-16
--reduceEqTel :: UnifyState -> TCM UnifyState
--reduceEqTel = lensEqTel reduce

-- UNUSED Andreas, 2019-10-14
-- instance Normalise UnifyState where
--   normalise' (UState var flex eq lhs rhs) =
--     UState <$> normalise' var
--            <*> pure flex
--            <*> normalise' eq
--            <*> normalise' lhs
--            <*> normalise' rhs

instance PrettyTCM UnifyState where
  prettyTCM :: forall (m :: * -> *). MonadPretty m => UnifyState -> m Doc
prettyTCM UnifyState
state = m Doc
"UnifyState" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
    [ m Doc
"variable tel:  " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Telescope -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
gamma
    , m Doc
"flexible vars: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [(Int, IsForced)] -> m Doc
forall (m :: * -> *) a. (Applicative m, Show a) => a -> m Doc
pshow ((FlexibleVar Int -> (Int, IsForced))
-> FlexibleVars -> [(Int, IsForced)]
forall a b. (a -> b) -> [a] -> [b]
map FlexibleVar Int -> (Int, IsForced)
forall {a}. FlexibleVar a -> (a, IsForced)
flexVarF (FlexibleVars -> [(Int, IsForced)])
-> FlexibleVars -> [(Int, IsForced)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> FlexibleVars
flexVars UnifyState
state)
    , m Doc
"equation tel:  " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Telescope -> m Doc -> m Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
gamma (Telescope -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
delta)
    , m Doc
"equations:     " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Telescope -> m Doc -> m Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
gamma ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> Arg Term -> m Doc)
-> [Arg Term] -> [Arg Term] -> [m Doc]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Arg Term -> Arg Term -> m Doc
forall {m :: * -> *} {a} {a}.
(PureTCM m, MonadInteractionPoints m, MonadFresh NameId m,
 MonadStConcreteNames m, IsString (m Doc), Null (m Doc),
 Semigroup (m Doc), PrettyTCM a, PrettyTCM a) =>
a -> a -> m Doc
prettyEquality (UnifyState -> [Arg Term]
eqLHS UnifyState
state) (UnifyState -> [Arg Term]
eqRHS UnifyState
state)))
    ])
    where
      flexVarF :: FlexibleVar a -> (a, IsForced)
flexVarF FlexibleVar a
fi = (FlexibleVar a -> a
forall a. FlexibleVar a -> a
flexVar FlexibleVar a
fi, FlexibleVar a -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar a
fi)
      gamma :: Telescope
gamma = UnifyState -> Telescope
varTel UnifyState
state
      delta :: Telescope
delta = UnifyState -> Telescope
eqTel UnifyState
state
      prettyEquality :: a -> a -> m Doc
prettyEquality a
x a
y = a -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
x m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> m Doc
"=?=" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> a -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
y

initUnifyState
  :: PureTCM m
  => Telescope -> FlexibleVars -> Type -> Args -> Args -> m UnifyState
initUnifyState :: forall (m :: * -> *).
PureTCM m =>
Telescope
-> FlexibleVars -> Type -> [Arg Term] -> [Arg Term] -> m UnifyState
initUnifyState Telescope
tel FlexibleVars
flex Type
a [Arg Term]
lhs [Arg Term]
rhs = do
  (Telescope
tel, Type
a, [Arg Term]
lhs, [Arg Term]
rhs) <- (Telescope, Type, [Arg Term], [Arg Term])
-> m (Telescope, Type, [Arg Term], [Arg Term])
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull (Telescope
tel, Type
a, [Arg Term]
lhs, [Arg Term]
rhs)
  let n :: Int
n = [Arg Term] -> Int
forall a. Sized a => a -> Int
size [Arg Term]
lhs
  Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== [Arg Term] -> Int
forall a. Sized a => a -> Int
size [Arg Term]
rhs) m ()
forall a. HasCallStack => a
__IMPOSSIBLE__
  TelV Telescope
eqTel Type
_ <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
a
  Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel) m ()
forall a. HasCallStack => a
__IMPOSSIBLE__
  UnifyState -> m UnifyState
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyState -> m UnifyState) -> UnifyState -> m UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope
-> FlexibleVars
-> Telescope
-> [Arg Term]
-> [Arg Term]
-> UnifyState
UState Telescope
tel FlexibleVars
flex Telescope
eqTel [Arg Term]
lhs [Arg Term]
rhs
  -- Andreas, 2019-02-23, issue #3578: do not eagerly reduce
  -- reduce $ UState tel flex eqTel lhs rhs

isUnifyStateSolved :: UnifyState -> Bool
isUnifyStateSolved :: UnifyState -> Bool
isUnifyStateSolved = Telescope -> Bool
forall a. Null a => a -> Bool
null (Telescope -> Bool)
-> (UnifyState -> Telescope) -> UnifyState -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. UnifyState -> Telescope
eqTel

varCount :: UnifyState -> Int
varCount :: UnifyState -> Int
varCount = Telescope -> Int
forall a. Sized a => a -> Int
size (Telescope -> Int)
-> (UnifyState -> Telescope) -> UnifyState -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. UnifyState -> Telescope
varTel

-- | Get the type of the i'th variable in the given state
getVarType :: Int -> UnifyState -> Dom Type
getVarType :: Int -> UnifyState -> Dom' Term Type
getVarType Int
i UnifyState
s = Dom' Term Type -> [Dom' Term Type] -> Int -> Dom' Term Type
forall a. a -> [a] -> Int -> a
indexWithDefault Dom' Term Type
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> [Dom' Term Type]
forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel (Telescope -> [Dom' Term Type]) -> Telescope -> [Dom' Term Type]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
varTel UnifyState
s) Int
i

getVarTypeUnraised :: Int -> UnifyState -> Dom Type
getVarTypeUnraised :: Int -> UnifyState -> Dom' Term Type
getVarTypeUnraised Int
i UnifyState
s = (String, Type) -> Type
forall a b. (a, b) -> b
snd ((String, Type) -> Type)
-> Dom' Term (String, Type) -> Dom' Term Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term (String, Type)
-> [Dom' Term (String, Type)] -> Int -> Dom' Term (String, Type)
forall a. a -> [a] -> Int -> a
indexWithDefault Dom' Term (String, Type)
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList (Telescope -> [Dom' Term (String, Type)])
-> Telescope -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
varTel UnifyState
s) Int
i

eqCount :: UnifyState -> Int
eqCount :: UnifyState -> Int
eqCount = Telescope -> Int
forall a. Sized a => a -> Int
size (Telescope -> Int)
-> (UnifyState -> Telescope) -> UnifyState -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. UnifyState -> Telescope
eqTel

-- | Get the k'th equality in the given state. The left- and right-hand sides
--   of the equality live in the varTel telescope, and the type of the equality
--   lives in the varTel++eqTel telescope
getEquality :: Int -> UnifyState -> Equality
getEquality :: Int -> UnifyState -> Equality
getEquality Int
k UState { eqTel :: UnifyState -> Telescope
eqTel = Telescope
eqs, eqLHS :: UnifyState -> [Arg Term]
eqLHS = [Arg Term]
lhs, eqRHS :: UnifyState -> [Arg Term]
eqRHS = [Arg Term]
rhs } =
    Dom' Term Type -> Term -> Term -> Equality
Equal (Dom' Term Type -> [Dom' Term Type] -> Int -> Dom' Term Type
forall a. a -> [a] -> Int -> a
indexWithDefault Dom' Term Type
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> [Dom' Term Type]
forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
eqs) Int
k)
          (Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> [Arg Term] -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ [Arg Term]
lhs Int
k)
          (Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> [Arg Term] -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ [Arg Term]
rhs Int
k)

-- | As getEquality, but with the unraised type
getEqualityUnraised :: Int -> UnifyState -> Equality
getEqualityUnraised :: Int -> UnifyState -> Equality
getEqualityUnraised Int
k UState { eqTel :: UnifyState -> Telescope
eqTel = Telescope
eqs, eqLHS :: UnifyState -> [Arg Term]
eqLHS = [Arg Term]
lhs, eqRHS :: UnifyState -> [Arg Term]
eqRHS = [Arg Term]
rhs } =
    Dom' Term Type -> Term -> Term -> Equality
Equal ((String, Type) -> Type
forall a b. (a, b) -> b
snd ((String, Type) -> Type)
-> Dom' Term (String, Type) -> Dom' Term Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term (String, Type)
-> [Dom' Term (String, Type)] -> Int -> Dom' Term (String, Type)
forall a. a -> [a] -> Int -> a
indexWithDefault Dom' Term (String, Type)
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
eqs) Int
k)
          (Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> [Arg Term] -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ [Arg Term]
lhs Int
k)
          (Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> [Arg Term] -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ [Arg Term]
rhs Int
k)

--UNUSED Liang-Ting Chen 2019-07-16
--getEqInfo :: Int -> UnifyState -> ArgInfo
--getEqInfo k UState { eqTel = eqs } =
--  domInfo $ indexWithDefault __IMPOSSIBLE__ (telToList eqs) k
--
---- | Add a list of equations to the front of the equation telescope
--addEqs :: Telescope -> [Arg Term] -> [Arg Term] -> UnifyState -> UnifyState
--addEqs tel us vs s =
--  s { eqTel = tel `abstract` eqTel s
--    , eqLHS = us ++ eqLHS s
--    , eqRHS = vs ++ eqRHS s
--    }
--  where k = size tel
--
--addEq :: Type -> Arg Term -> Arg Term -> UnifyState -> UnifyState
--addEq a u v = addEqs (ExtendTel (defaultDom a) (Abs underscore EmptyTel)) [u] [v]



-- | Instantiate the k'th variable with the given value.
--   Returns Nothing if there is a cycle.
solveVar :: Int             -- ^ Index @k@
         -> DeBruijnPattern -- ^ Solution @u@
         -> UnifyState -> Maybe (UnifyState, PatternSubstitution)
solveVar :: Int
-> Pattern' DBPatVar
-> UnifyState
-> Maybe (UnifyState, PatternSubstitution)
solveVar Int
k Pattern' DBPatVar
u UnifyState
s = case Telescope
-> Int
-> Pattern' DBPatVar
-> Maybe (Telescope, PatternSubstitution, Permutation)
instantiateTelescope (UnifyState -> Telescope
varTel UnifyState
s) Int
k Pattern' DBPatVar
u of
  Maybe (Telescope, PatternSubstitution, Permutation)
Nothing -> Maybe (UnifyState, PatternSubstitution)
forall a. Maybe a
Nothing
  Just (Telescope
tel' , PatternSubstitution
sigma , Permutation
rho) -> (UnifyState, PatternSubstitution)
-> Maybe (UnifyState, PatternSubstitution)
forall a. a -> Maybe a
Just ((UnifyState, PatternSubstitution)
 -> Maybe (UnifyState, PatternSubstitution))
-> (UnifyState, PatternSubstitution)
-> Maybe (UnifyState, PatternSubstitution)
forall a b. (a -> b) -> a -> b
$ (,PatternSubstitution
sigma) (UnifyState -> (UnifyState, PatternSubstitution))
-> UnifyState -> (UnifyState, PatternSubstitution)
forall a b. (a -> b) -> a -> b
$ UState
      { varTel :: Telescope
varTel   = Telescope
tel'
      , flexVars :: FlexibleVars
flexVars = Permutation -> FlexibleVars -> FlexibleVars
permuteFlex (Permutation -> Permutation
reverseP Permutation
rho) (FlexibleVars -> FlexibleVars) -> FlexibleVars -> FlexibleVars
forall a b. (a -> b) -> a -> b
$ UnifyState -> FlexibleVars
flexVars UnifyState
s
      , eqTel :: Telescope
eqTel    = PatternSubstitution -> Telescope -> Telescope
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
sigma (Telescope -> Telescope) -> Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
      , eqLHS :: [Arg Term]
eqLHS    = PatternSubstitution -> [Arg Term] -> [Arg Term]
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
sigma ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqLHS UnifyState
s
      , eqRHS :: [Arg Term]
eqRHS    = PatternSubstitution -> [Arg Term] -> [Arg Term]
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
sigma ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqRHS UnifyState
s
      }
  where
    permuteFlex :: Permutation -> FlexibleVars -> FlexibleVars
    permuteFlex :: Permutation -> FlexibleVars -> FlexibleVars
permuteFlex Permutation
perm =
      (FlexibleVar Int -> Maybe (FlexibleVar Int))
-> FlexibleVars -> FlexibleVars
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe ((FlexibleVar Int -> Maybe (FlexibleVar Int))
 -> FlexibleVars -> FlexibleVars)
-> (FlexibleVar Int -> Maybe (FlexibleVar Int))
-> FlexibleVars
-> FlexibleVars
forall a b. (a -> b) -> a -> b
$ \(FlexibleVar ArgInfo
ai IsForced
fc FlexibleVarKind
k Maybe Int
p Int
x) ->
        ArgInfo
-> IsForced
-> FlexibleVarKind
-> Maybe Int
-> Int
-> FlexibleVar Int
forall a.
ArgInfo
-> IsForced -> FlexibleVarKind -> Maybe Int -> a -> FlexibleVar a
FlexibleVar ArgInfo
ai IsForced
fc FlexibleVarKind
k Maybe Int
p (Int -> FlexibleVar Int) -> Maybe Int -> Maybe (FlexibleVar Int)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> [Int] -> Maybe Int
forall a. Eq a => a -> [a] -> Maybe Int
List.elemIndex Int
x (Permutation -> [Int]
permPicks Permutation
perm)

applyUnder :: Int -> Telescope -> Term -> Telescope
applyUnder :: Int -> Telescope -> Term -> Telescope
applyUnder Int
k Telescope
tel Term
u
 | Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0     = Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
 | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0    = Telescope
tel Telescope -> Term -> Telescope
forall t. Apply t => t -> Term -> t
`apply1` Term
u
 | Bool
otherwise = case Telescope
tel of
    Telescope
EmptyTel         -> Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
    ExtendTel Dom' Term Type
a Abs Telescope
tel' -> Dom' Term Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom' Term Type
a (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$
      String -> Telescope -> Abs Telescope
forall a. String -> a -> Abs a
Abs (Abs Telescope -> String
forall a. Abs a -> String
absName Abs Telescope
tel') (Telescope -> Abs Telescope) -> Telescope -> Abs Telescope
forall a b. (a -> b) -> a -> b
$ Int -> Telescope -> Term -> Telescope
applyUnder (Int
kInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Abs Telescope -> Telescope
forall a. Subst a => Abs a -> a
absBody Abs Telescope
tel') Term
u

dropAt :: Int -> [a] -> [a]
dropAt :: forall a. Int -> [a] -> [a]
dropAt Int
_ [] = [a]
forall a. HasCallStack => a
__IMPOSSIBLE__
dropAt Int
k (a
x:[a]
xs)
 | Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0     = [a]
forall a. HasCallStack => a
__IMPOSSIBLE__
 | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0    = [a]
xs
 | Bool
otherwise = a
x a -> [a] -> [a]
forall a. a -> [a] -> [a]
: Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
dropAt (Int
kInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) [a]
xs

-- | Solve the k'th equation with the given value, which can depend on
--   regular variables but not on other equation variables.
solveEq :: Int -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq :: Int -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq Int
k Term
u UnifyState
s = (,PatternSubstitution
sigma) (UnifyState -> (UnifyState, PatternSubstitution))
-> UnifyState -> (UnifyState, PatternSubstitution)
forall a b. (a -> b) -> a -> b
$ UnifyState
s
    { eqTel :: Telescope
eqTel    = Int -> Telescope -> Term -> Telescope
applyUnder Int
k (UnifyState -> Telescope
eqTel UnifyState
s) Term
u'
    , eqLHS :: [Arg Term]
eqLHS    = Int -> [Arg Term] -> [Arg Term]
forall a. Int -> [a] -> [a]
dropAt Int
k ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqLHS UnifyState
s
    , eqRHS :: [Arg Term]
eqRHS    = Int -> [Arg Term] -> [Arg Term]
forall a. Int -> [a] -> [a]
dropAt Int
k ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqRHS UnifyState
s
    }
  where
    u' :: Term
u'    = Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
k Term
u
    n :: Int
n     = UnifyState -> Int
eqCount UnifyState
s
    sigma :: PatternSubstitution
sigma = Int -> PatternSubstitution -> PatternSubstitution
forall a. Int -> Substitution' a -> Substitution' a
liftS (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
kInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (PatternSubstitution -> PatternSubstitution)
-> PatternSubstitution -> PatternSubstitution
forall a b. (a -> b) -> a -> b
$ Pattern' DBPatVar -> PatternSubstitution -> PatternSubstitution
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS (Term -> Pattern' DBPatVar
forall a. Term -> Pattern' a
dotP Term
u') PatternSubstitution
forall a. Substitution' a
idS

--UNUSED Liang-Ting Chen 2019-07-16
---- | Simplify the k'th equation with the given value (which can depend on other
----   equation variables). Returns Nothing if there is a cycle.
--simplifyEq :: Int -> Term -> UnifyState -> Maybe (UnifyState, PatternSubstitution)
--simplifyEq k u s = case instantiateTelescope (eqTel s) k u of
--  Nothing -> Nothing
--  Just (tel' , sigma , rho) -> Just $ (,sigma) $ UState
--    { varTel   = varTel s
--    , flexVars = flexVars s
--    , eqTel    = tel'
--    , eqLHS    = permute rho $ eqLHS s
--    , eqRHS    = permute rho $ eqRHS s
--    }
--
----------------------------------------------------
-- Unification strategies
----------------------------------------------------

data UnifyStep
  = Deletion
    { UnifyStep -> Int
deleteAt           :: Int
    , UnifyStep -> Type
deleteType         :: Type
    , UnifyStep -> Term
deleteLeft         :: Term
    , UnifyStep -> Term
deleteRight        :: Term
    }
  | Solution
    { UnifyStep -> Int
solutionAt         :: Int
    , UnifyStep -> Dom' Term Type
solutionType       :: Dom Type
    , UnifyStep -> FlexibleVar Int
solutionVar        :: FlexibleVar Int
    , UnifyStep -> Term
solutionTerm       :: Term
    }
  | Injectivity
    { UnifyStep -> Int
injectAt           :: Int
    , UnifyStep -> Type
injectType         :: Type
    , UnifyStep -> QName
injectDatatype     :: QName
    , UnifyStep -> [Arg Term]
injectParameters   :: Args
    , UnifyStep -> [Arg Term]
injectIndices      :: Args
    , UnifyStep -> ConHead
injectConstructor  :: ConHead
    }
  | Conflict
    { UnifyStep -> Int
conflictAt         :: Int
    , UnifyStep -> Type
conflictType       :: Type
    , UnifyStep -> QName
conflictDatatype   :: QName
    , UnifyStep -> [Arg Term]
conflictParameters :: Args
    , UnifyStep -> Term
conflictLeft       :: Term
    , UnifyStep -> Term
conflictRight      :: Term
    }
  | Cycle
    { UnifyStep -> Int
cycleAt            :: Int
    , UnifyStep -> Type
cycleType          :: Type
    , UnifyStep -> QName
cycleDatatype      :: QName
    , UnifyStep -> [Arg Term]
cycleParameters    :: Args
    , UnifyStep -> Int
cycleVar           :: Int
    , UnifyStep -> Term
cycleOccursIn      :: Term
    }
  | EtaExpandVar
    { UnifyStep -> FlexibleVar Int
expandVar           :: FlexibleVar Int
    , UnifyStep -> QName
expandVarRecordType :: QName
    , UnifyStep -> [Arg Term]
expandVarParameters :: Args
    }
  | EtaExpandEquation
    { UnifyStep -> Int
expandAt           :: Int
    , UnifyStep -> QName
expandRecordType   :: QName
    , UnifyStep -> [Arg Term]
expandParameters   :: Args
    }
  | LitConflict
    { UnifyStep -> Int
litConflictAt      :: Int
    , UnifyStep -> Type
litType            :: Type
    , UnifyStep -> Literal
litConflictLeft    :: Literal
    , UnifyStep -> Literal
litConflictRight   :: Literal
    }
  | StripSizeSuc
    { UnifyStep -> Int
stripAt            :: Int
    , UnifyStep -> Term
stripArgLeft       :: Term
    , UnifyStep -> Term
stripArgRight      :: Term
    }
  | SkipIrrelevantEquation
    { UnifyStep -> Int
skipIrrelevantAt   :: Int
    }
  | TypeConInjectivity
    { UnifyStep -> Int
typeConInjectAt    :: Int
    , UnifyStep -> QName
typeConstructor    :: QName
    , UnifyStep -> [Arg Term]
typeConArgsLeft    :: Args
    , UnifyStep -> [Arg Term]
typeConArgsRight   :: Args
    } deriving (Int -> UnifyStep -> ShowS
[UnifyStep] -> ShowS
UnifyStep -> String
(Int -> UnifyStep -> ShowS)
-> (UnifyStep -> String)
-> ([UnifyStep] -> ShowS)
-> Show UnifyStep
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [UnifyStep] -> ShowS
$cshowList :: [UnifyStep] -> ShowS
show :: UnifyStep -> String
$cshow :: UnifyStep -> String
showsPrec :: Int -> UnifyStep -> ShowS
$cshowsPrec :: Int -> UnifyStep -> ShowS
Show)

instance PrettyTCM UnifyStep where
  prettyTCM :: forall (m :: * -> *). MonadPretty m => UnifyStep -> m Doc
prettyTCM UnifyStep
step = case UnifyStep
step of
    Deletion Int
k Type
a Term
u Term
v -> m Doc
"Deletion" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"type:       " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
      , m Doc
"lhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
      , m Doc
"rhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
      ])
    Solution Int
k Dom' Term Type
a FlexibleVar Int
i Term
u -> m Doc
"Solution" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"type:       " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Dom' Term Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Dom' Term Type
a
      , m Doc
"variable:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text ((Int, Maybe Int, IsForced, FlexibleVarKind) -> String
forall a. Show a => a -> String
show (FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar FlexibleVar Int
i, FlexibleVar Int -> Maybe Int
forall a. FlexibleVar a -> Maybe Int
flexPos FlexibleVar Int
i, FlexibleVar Int -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar Int
i, FlexibleVar Int -> FlexibleVarKind
forall a. FlexibleVar a -> FlexibleVarKind
flexKind FlexibleVar Int
i))
      , m Doc
"term:       " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
      ])
    Injectivity Int
k Type
a QName
d [Arg Term]
pars [Arg Term]
ixs ConHead
c -> m Doc
"Injectivity" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"type:       " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
      , m Doc
"datatype:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
      , m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> [Arg Term] -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
pars)
      , m Doc
"indices:    " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> [Arg Term] -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
ixs)
      , m Doc
"constructor:" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> ConHead -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM ConHead
c
      ])
    Conflict Int
k Type
a QName
d [Arg Term]
pars Term
u Term
v -> m Doc
"Conflict" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"type:       " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
      , m Doc
"datatype:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
      , m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> [Arg Term] -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
pars)
      , m Doc
"lhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
      , m Doc
"rhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
      ])
    Cycle Int
k Type
a QName
d [Arg Term]
pars Int
i Term
u -> m Doc
"Cycle" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"type:       " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
      , m Doc
"datatype:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
      , m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> [Arg Term] -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
pars)
      , m Doc
"variable:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
i)
      , m Doc
"term:       " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
      ])
    EtaExpandVar FlexibleVar Int
fi QName
r [Arg Term]
pars -> m Doc
"EtaExpandVar" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"variable:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexibleVar Int -> String
forall a. Show a => a -> String
show FlexibleVar Int
fi)
      , m Doc
"record type:" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
r
      , m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Arg Term] -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
pars
      ])
    EtaExpandEquation Int
k QName
r [Arg Term]
pars -> m Doc
"EtaExpandEquation" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"record type:" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
r
      , m Doc
"parameters: " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Arg Term] -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
pars
      ])
    LitConflict Int
k Type
a Literal
u Literal
v -> m Doc
"LitConflict" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"type:       " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
      , m Doc
"lhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Literal -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Literal
u
      , m Doc
"rhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Literal -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Literal
v
      ])
    StripSizeSuc Int
k Term
u Term
v -> m Doc
"StripSizeSuc" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"lhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
      , m Doc
"rhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
      ])
    SkipIrrelevantEquation Int
k -> m Doc
"SkipIrrelevantEquation" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      ])
    TypeConInjectivity Int
k QName
d [Arg Term]
us [Arg Term]
vs -> m Doc
"TypeConInjectivity" m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
$$ Int -> m Doc -> m Doc
forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
nest Int
2 ([m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([m Doc] -> m Doc) -> [m Doc] -> m Doc
forall a b. (a -> b) -> a -> b
$
      [ m Doc
"position:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> m Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
k)
      , m Doc
"datatype:   " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
      , m Doc
"lhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> [Arg Term] -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
us)
      , m Doc
"rhs:        " m Doc -> m Doc -> m Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [m Doc] -> m Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg Term -> m Doc) -> [Arg Term] -> [m Doc]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Arg Term]
vs)
      ])

type UnifyStrategy = forall m. (PureTCM m, MonadPlus m) => UnifyState -> m UnifyStep

--UNUSED Liang-Ting Chen 2019-07-16
--leftToRightStrategy :: UnifyStrategy
--leftToRightStrategy s =
--    msum (for [0..n-1] $ \k -> completeStrategyAt k s)
--  where n = size $ eqTel s

rightToLeftStrategy :: UnifyStrategy
rightToLeftStrategy :: UnifyStrategy
rightToLeftStrategy UnifyState
s =
    [m UnifyStep] -> m UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum ([Int] -> (Int -> m UnifyStep) -> [m UnifyStep]
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
for (Int -> [Int]
forall a. Integral a => a -> [a]
downFrom Int
n) ((Int -> m UnifyStep) -> [m UnifyStep])
-> (Int -> m UnifyStep) -> [m UnifyStep]
forall a b. (a -> b) -> a -> b
$ \Int
k -> Int -> UnifyStrategy
completeStrategyAt Int
k UnifyState
s)
  where n :: Int
n = Telescope -> Int
forall a. Sized a => a -> Int
size (Telescope -> Int) -> Telescope -> Int
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s

completeStrategyAt :: Int -> UnifyStrategy
completeStrategyAt :: Int -> UnifyStrategy
completeStrategyAt Int
k UnifyState
s = [m UnifyStep] -> m UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum ([m UnifyStep] -> m UnifyStep) -> [m UnifyStep] -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ ((Int -> UnifyState -> m UnifyStep) -> m UnifyStep)
-> [Int -> UnifyState -> m UnifyStep] -> [m UnifyStep]
forall a b. (a -> b) -> [a] -> [b]
map (\Int -> UnifyState -> m UnifyStep
strat -> Int -> UnifyState -> m UnifyStep
strat Int
k UnifyState
s) ([Int -> UnifyState -> m UnifyStep] -> [m UnifyStep])
-> [Int -> UnifyState -> m UnifyStep] -> [m UnifyStep]
forall a b. (a -> b) -> a -> b
$
-- ASR (2021-02-07). The below eta-expansions are required by GHC >=
-- 9.0.1 (see Issue #4955).
    [ (\Int
n -> Int -> UnifyStrategy
skipIrrelevantStrategy Int
n)
    , (\Int
n -> Int -> UnifyStrategy
basicUnifyStrategy Int
n)
    , (\Int
n -> Int -> UnifyStrategy
literalStrategy Int
n)
    , (\Int
n -> Int -> UnifyStrategy
dataStrategy Int
n)
    , (\Int
n -> Int -> UnifyStrategy
etaExpandVarStrategy  Int
n)
    , (\Int
n -> Int -> UnifyStrategy
etaExpandEquationStrategy Int
n)
    , (\Int
n -> Int -> UnifyStrategy
injectiveTypeConStrategy Int
n)
    , (\Int
n -> Int -> UnifyStrategy
injectivePragmaStrategy Int
n)
    , (\Int
n -> Int -> UnifyStrategy
simplifySizesStrategy Int
n)
    , (\Int
n -> Int -> UnifyStrategy
checkEqualityStrategy Int
n)
    ]

-- | @isHom n x@ returns x lowered by n if the variables 0..n-1 don't occur in x.
--
-- This is naturally sensitive to normalization.
isHom :: (Free a, Subst a) => Int -> a -> Maybe a
isHom :: forall a. (Free a, Subst a) => Int -> a -> Maybe a
isHom Int
n a
x = do
  Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> Maybe ()) -> Bool -> Maybe ()
forall a b. (a -> b) -> a -> b
$ All -> Bool
getAll (All -> Bool) -> All -> Bool
forall a b. (a -> b) -> a -> b
$ SingleVar All -> IgnoreSorts -> a -> All
forall a c t.
(IsVarSet a c, Free t) =>
SingleVar c -> IgnoreSorts -> t -> c
runFree (Bool -> All
All (Bool -> All) -> (Int -> Bool) -> SingleVar All
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n)) IgnoreSorts
IgnoreNot a
x
  a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> Maybe a) -> a -> Maybe a
forall a b. (a -> b) -> a -> b
$ Int -> a -> a
forall a. Subst a => Int -> a -> a
raise (-Int
n) a
x

findFlexible :: Int -> FlexibleVars -> Maybe (FlexibleVar Nat)
findFlexible :: Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
i FlexibleVars
flex = (FlexibleVar Int -> Bool)
-> FlexibleVars -> Maybe (FlexibleVar Int)
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
List.find ((Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==) (Int -> Bool)
-> (FlexibleVar Int -> Int) -> FlexibleVar Int -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar) FlexibleVars
flex

basicUnifyStrategy :: Int -> UnifyStrategy
basicUnifyStrategy :: Int -> UnifyStrategy
basicUnifyStrategy Int
k UnifyState
s = do
  Equal dom :: Dom' Term Type
dom@Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s)
    -- Andreas, 2019-02-23: reduce equality for the sake of isHom?
  Type
ha <- Maybe Type -> m Type
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe Type -> m Type) -> Maybe Type -> m Type
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Maybe Type
forall a. (Free a, Subst a) => Int -> a -> Maybe a
isHom Int
n Type
a
  (Maybe Int
mi, Maybe Int
mj) <- Telescope -> m (Maybe Int, Maybe Int) -> m (Maybe Int, Maybe Int)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m (Maybe Int, Maybe Int) -> m (Maybe Int, Maybe Int))
-> m (Maybe Int, Maybe Int) -> m (Maybe Int, Maybe Int)
forall a b. (a -> b) -> a -> b
$ (,) (Maybe Int -> Maybe Int -> (Maybe Int, Maybe Int))
-> m (Maybe Int) -> m (Maybe Int -> (Maybe Int, Maybe Int))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> Type -> m (Maybe Int)
forall (m :: * -> *). PureTCM m => Term -> Type -> m (Maybe Int)
isEtaVar Term
u Type
ha m (Maybe Int -> (Maybe Int, Maybe Int))
-> m (Maybe Int) -> m (Maybe Int, Maybe Int)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Term -> Type -> m (Maybe Int)
forall (m :: * -> *). PureTCM m => Term -> Type -> m (Maybe Int)
isEtaVar Term
v Type
ha
  String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
30 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"isEtaVar results: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text ([Maybe Int] -> String
forall a. Show a => a -> String
show [Maybe Int
mi,Maybe Int
mj])
  case (Maybe Int
mi, Maybe Int
mj) of
    (Just Int
i, Just Int
j)
     | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero -- Taken care of by checkEqualityStrategy
    (Just Int
i, Just Int
j)
     | Just FlexibleVar Int
fi <- Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
i FlexibleVars
flex
     , Just FlexibleVar Int
fj <- Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
j FlexibleVars
flex -> do
       let choice :: FlexChoice
choice = FlexibleVar Int -> FlexibleVar Int -> FlexChoice
forall a. ChooseFlex a => a -> a -> FlexChoice
chooseFlex FlexibleVar Int
fi FlexibleVar Int
fj
           firstTryLeft :: m UnifyStep
firstTryLeft  = [m UnifyStep] -> m UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum [ UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Dom' Term Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom' Term Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fi Term
v)
                                , UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Dom' Term Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom' Term Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fj Term
u)]
           firstTryRight :: m UnifyStep
firstTryRight = [m UnifyStep] -> m UnifyStep
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, MonadPlus m) =>
t (m a) -> m a
msum [ UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Dom' Term Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom' Term Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fj Term
u)
                                , UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Dom' Term Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom' Term Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fi Term
v)]
       String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"fi = " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexibleVar Int -> String
forall a. Show a => a -> String
show FlexibleVar Int
fi)
       String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"fj = " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexibleVar Int -> String
forall a. Show a => a -> String
show FlexibleVar Int
fj)
       String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"chooseFlex: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (FlexChoice -> String
forall a. Show a => a -> String
show FlexChoice
choice)
       case FlexChoice
choice of
         FlexChoice
ChooseLeft   -> m UnifyStep
firstTryLeft
         FlexChoice
ChooseRight  -> m UnifyStep
firstTryRight
         FlexChoice
ExpandBoth   -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero -- This should be taken care of by etaExpandEquationStrategy
         FlexChoice
ChooseEither -> m UnifyStep
firstTryRight
    (Just Int
i, Maybe Int
_)
     | Just FlexibleVar Int
fi <- Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
i FlexibleVars
flex -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Dom' Term Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom' Term Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fi Term
v
    (Maybe Int
_, Just Int
j)
     | Just FlexibleVar Int
fj <- Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
j FlexibleVars
flex -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Dom' Term Type -> FlexibleVar Int -> Term -> UnifyStep
Solution Int
k Dom' Term Type
dom{unDom :: Type
unDom = Type
ha} FlexibleVar Int
fj Term
u
    (Maybe Int, Maybe Int)
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
  where
    flex :: FlexibleVars
flex = UnifyState -> FlexibleVars
flexVars UnifyState
s
    n :: Int
n = UnifyState -> Int
eqCount UnifyState
s

dataStrategy :: Int -> UnifyStrategy
dataStrategy :: Int -> UnifyStrategy
dataStrategy Int
k UnifyState
s = do
  Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqConstructorForm (Equality -> m Equality) -> m Equality -> m Equality
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality) -> m Equality -> m Equality
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Int -> UnifyState -> Equality
getEqualityUnraised Int
k UnifyState
s)
  Sort
sa <- Sort -> m Sort
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Sort -> m Sort) -> Sort -> m Sort
forall a b. (a -> b) -> a -> b
$ Type -> Sort
forall a. LensSort a => a -> Sort
getSort Type
a
  case Type -> Term
forall t a. Type'' t a -> a
unEl Type
a of
    Def QName
d Elims
es | Type{} <- Sort
sa -> do
      Int
npars <- m (Maybe Int) -> m Int
forall (m :: * -> *) a. MonadPlus m => m (Maybe a) -> m a
catMaybesMP (m (Maybe Int) -> m Int) -> m (Maybe Int) -> m Int
forall a b. (a -> b) -> a -> b
$ QName -> m (Maybe Int)
forall (m :: * -> *). HasConstInfo m => QName -> m (Maybe Int)
getNumberOfParameters QName
d
      let ([Arg Term]
pars,[Arg Term]
ixs) = Int -> [Arg Term] -> ([Arg Term], [Arg Term])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
npars ([Arg Term] -> ([Arg Term], [Arg Term]))
-> [Arg Term] -> ([Arg Term], [Arg Term])
forall a b. (a -> b) -> a -> b
$ [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
      String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ Telescope -> TCMT IO Doc -> TCMT IO Doc
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` UnifyState -> Telescope
eqTel UnifyState
s) (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$
        TCMT IO Doc
"Found equation at datatype " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
         TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
" with parameters " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Arg Term] -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (Int -> [Arg Term] -> [Arg Term]
forall a. Subst a => Int -> a -> a
raise (Telescope -> Int
forall a. Sized a => a -> Int
size (UnifyState -> Telescope
eqTel UnifyState
s) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
k) [Arg Term]
pars)
      case (Term
u, Term
v) of
        (Con ConHead
c ConInfo
_ Elims
_   , Con ConHead
c' ConInfo
_ Elims
_  ) | ConHead
c ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
c' -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int
-> Type
-> QName
-> [Arg Term]
-> [Arg Term]
-> ConHead
-> UnifyStep
Injectivity Int
k Type
a QName
d [Arg Term]
pars [Arg Term]
ixs ConHead
c
        (Con ConHead
c ConInfo
_ Elims
_   , Con ConHead
c' ConInfo
_ Elims
_  ) -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> QName -> [Arg Term] -> Term -> Term -> UnifyStep
Conflict Int
k Type
a QName
d [Arg Term]
pars Term
u Term
v
        (Var Int
i []  , Term
v         ) -> Int -> Term -> m UnifyStep -> m UnifyStep
forall {m :: * -> *} {a} {b}.
(ForceNotFree a, Reduce a, MonadReduce m, Free a, MonadPlus m) =>
Int -> a -> m b -> m b
ifOccursStronglyRigid Int
i Term
v (m UnifyStep -> m UnifyStep) -> m UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> QName -> [Arg Term] -> Int -> Term -> UnifyStep
Cycle Int
k Type
a QName
d [Arg Term]
pars Int
i Term
v
        (Term
u         , Var Int
j []  ) -> Int -> Term -> m UnifyStep -> m UnifyStep
forall {m :: * -> *} {a} {b}.
(ForceNotFree a, Reduce a, MonadReduce m, Free a, MonadPlus m) =>
Int -> a -> m b -> m b
ifOccursStronglyRigid Int
j Term
u (m UnifyStep -> m UnifyStep) -> m UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> QName -> [Arg Term] -> Int -> Term -> UnifyStep
Cycle Int
k Type
a QName
d [Arg Term]
pars Int
j Term
u
        (Term, Term)
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
    Term
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
  where
    ifOccursStronglyRigid :: Int -> a -> m b -> m b
ifOccursStronglyRigid Int
i a
u m b
ret = do
        -- Call forceNotFree to reduce u as far as possible
        -- around any occurrences of i
        (IntMap IsFree
_ , a
u) <- IntSet -> a -> m (IntMap IsFree, a)
forall a (m :: * -> *).
(ForceNotFree a, Reduce a, MonadReduce m) =>
IntSet -> a -> m (IntMap IsFree, a)
forceNotFree (Int -> IntSet
forall el coll. Singleton el coll => el -> coll
singleton Int
i) a
u
        case Int -> a -> Maybe (FlexRig' ())
forall a. Free a => Int -> a -> Maybe (FlexRig' ())
flexRigOccurrenceIn Int
i a
u of
          Just FlexRig' ()
StronglyRigid -> m b
ret
          Maybe (FlexRig' ())
_ -> m b
forall (m :: * -> *) a. MonadPlus m => m a
mzero

checkEqualityStrategy :: Int -> UnifyStrategy
checkEqualityStrategy :: Int -> UnifyStrategy
checkEqualityStrategy Int
k UnifyState
s = do
  let Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v = Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
      n :: Int
n = UnifyState -> Int
eqCount UnifyState
s
  Type
ha <- Maybe Type -> m Type
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe Type -> m Type) -> Maybe Type -> m Type
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Maybe Type
forall a. (Free a, Subst a) => Int -> a -> Maybe a
isHom Int
n Type
a
  UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Term -> Term -> UnifyStep
Deletion Int
k Type
ha Term
u Term
v

literalStrategy :: Int -> UnifyStrategy
literalStrategy :: Int -> UnifyStrategy
literalStrategy Int
k UnifyState
s = do
  let n :: Int
n = UnifyState -> Int
eqCount UnifyState
s
  Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
  Type
ha <- Maybe Type -> m Type
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe Type -> m Type) -> Maybe Type -> m Type
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Maybe Type
forall a. (Free a, Subst a) => Int -> a -> Maybe a
isHom Int
n Type
a
  (Term
u, Term
v) <- (Term, Term) -> m (Term, Term)
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Term
u, Term
v)
  case (Term
u , Term
v) of
    (Lit Literal
l1 , Lit Literal
l2)
     | Literal
l1 Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l2  -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Term -> Term -> UnifyStep
Deletion Int
k Type
ha Term
u Term
v
     | Bool
otherwise -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Type -> Literal -> Literal -> UnifyStep
LitConflict Int
k Type
ha Literal
l1 Literal
l2
    (Term, Term)
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero

etaExpandVarStrategy :: Int -> UnifyStrategy
etaExpandVarStrategy :: Int -> UnifyStrategy
etaExpandVarStrategy Int
k UnifyState
s = do
  Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality)
-> (Equality -> m Equality) -> Equality -> m Equality
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
  Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand Term
u Term
v Type
a UnifyState
s m UnifyStep -> m UnifyStep -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand Term
v Term
u Type
a UnifyState
s
  where
    -- TODO: use IsEtaVar to check if the term is a variable
    shouldEtaExpand :: Term -> Term -> Type -> UnifyStrategy
    shouldEtaExpand :: Term -> Term -> Type -> UnifyStrategy
shouldEtaExpand (Var Int
i Elims
es) Term
v Type
a UnifyState
s = do
      FlexibleVar Int
fi       <- Maybe (FlexibleVar Int) -> m (FlexibleVar Int)
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe (FlexibleVar Int) -> m (FlexibleVar Int))
-> Maybe (FlexibleVar Int) -> m (FlexibleVar Int)
forall a b. (a -> b) -> a -> b
$ Int -> FlexibleVars -> Maybe (FlexibleVar Int)
findFlexible Int
i (UnifyState -> FlexibleVars
flexVars UnifyState
s)
      String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
50 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$
        TCMT IO Doc
"Found flexible variable " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (Int -> String
forall a. Show a => a -> String
show Int
i)
      -- Issue 2888: Do this if there are only projections or if it's a singleton
      -- record or if it's unified against a record constructor term. Basically
      -- we need to avoid EtaExpandEquation if EtaExpandVar is possible, or the
      -- forcing translation is unhappy.
      Type
b         <- Type -> m Type
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Type -> m Type) -> Type -> m Type
forall a b. (a -> b) -> a -> b
$ Dom' Term Type -> Type
forall t e. Dom' t e -> e
unDom (Dom' Term Type -> Type) -> Dom' Term Type -> Type
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Dom' Term Type
getVarTypeUnraised (UnifyState -> Int
varCount UnifyState
s Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i) UnifyState
s
      (QName
d, [Arg Term]
pars) <- m (Maybe (QName, [Arg Term])) -> m (QName, [Arg Term])
forall (m :: * -> *) a. MonadPlus m => m (Maybe a) -> m a
catMaybesMP (m (Maybe (QName, [Arg Term])) -> m (QName, [Arg Term]))
-> m (Maybe (QName, [Arg Term])) -> m (QName, [Arg Term])
forall a b. (a -> b) -> a -> b
$ Type -> m (Maybe (QName, [Arg Term]))
forall (m :: * -> *).
HasConstInfo m =>
Type -> m (Maybe (QName, [Arg Term]))
isEtaRecordType Type
b
      [(ProjOrigin, QName)]
ps        <- Maybe [(ProjOrigin, QName)] -> m [(ProjOrigin, QName)]
forall (m :: * -> *) a. MonadPlus m => Maybe a -> m a
fromMaybeMP (Maybe [(ProjOrigin, QName)] -> m [(ProjOrigin, QName)])
-> Maybe [(ProjOrigin, QName)] -> m [(ProjOrigin, QName)]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [(ProjOrigin, QName)]
forall t. [Elim' t] -> Maybe [(ProjOrigin, QName)]
allProjElims Elims
es
      Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> m Bool -> m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< [m Bool] -> m Bool
forall (f :: * -> *) (m :: * -> *).
(Foldable f, Monad m) =>
f (m Bool) -> m Bool
orM
        [ Bool -> m Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ [(ProjOrigin, QName)] -> Bool
forall a. Null a => a -> Bool
null [(ProjOrigin, QName)]
ps
        , Term -> m Bool
forall {f :: * -> *}. HasConstInfo f => Term -> f Bool
isRecCon Term
v  -- is the other term a record constructor?
        , (Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
==) (Either Blocker Bool -> Bool) -> m (Either Blocker Bool) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (QName -> [Arg Term] -> BlockT m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
QName -> [Arg Term] -> m Bool
isSingletonRecord QName
d [Arg Term]
pars)
        ]
      String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
50 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$
        TCMT IO Doc
"with projections " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [QName] -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (((ProjOrigin, QName) -> QName) -> [(ProjOrigin, QName)] -> [QName]
forall a b. (a -> b) -> [a] -> [b]
map (ProjOrigin, QName) -> QName
forall a b. (a, b) -> b
snd [(ProjOrigin, QName)]
ps)
      String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
50 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$
        TCMT IO Doc
"at record type " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> QName -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
      UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ FlexibleVar Int -> QName -> [Arg Term] -> UnifyStep
EtaExpandVar FlexibleVar Int
fi QName
d [Arg Term]
pars
    shouldEtaExpand Term
_ Term
_ Type
_ UnifyState
_ = m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero

    isRecCon :: Term -> f Bool
isRecCon (Con ConHead
c ConInfo
_ Elims
_) = Maybe (QName, Defn) -> Bool
forall a. Maybe a -> Bool
isJust (Maybe (QName, Defn) -> Bool) -> f (Maybe (QName, Defn)) -> f Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> f (Maybe (QName, Defn))
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Maybe (QName, Defn))
isRecordConstructor (ConHead -> QName
conName ConHead
c)
    isRecCon Term
_           = Bool -> f Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False

etaExpandEquationStrategy :: Int -> UnifyStrategy
etaExpandEquationStrategy :: Int -> UnifyStrategy
etaExpandEquationStrategy Int
k UnifyState
s = do
  -- Andreas, 2019-02-23, re #3578, is the following reduce redundant?
  Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEqualityUnraised Int
k UnifyState
s
  (QName
d, [Arg Term]
pars) <- m (Maybe (QName, [Arg Term])) -> m (QName, [Arg Term])
forall (m :: * -> *) a. MonadPlus m => m (Maybe a) -> m a
catMaybesMP (m (Maybe (QName, [Arg Term])) -> m (QName, [Arg Term]))
-> m (Maybe (QName, [Arg Term])) -> m (QName, [Arg Term])
forall a b. (a -> b) -> a -> b
$ Telescope
-> m (Maybe (QName, [Arg Term])) -> m (Maybe (QName, [Arg Term]))
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (m (Maybe (QName, [Arg Term])) -> m (Maybe (QName, [Arg Term])))
-> m (Maybe (QName, [Arg Term])) -> m (Maybe (QName, [Arg Term]))
forall a b. (a -> b) -> a -> b
$ Type -> m (Maybe (QName, [Arg Term]))
forall (m :: * -> *).
HasConstInfo m =>
Type -> m (Maybe (QName, [Arg Term]))
isEtaRecordType Type
a
  Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> m Bool -> m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< [m Bool] -> m Bool
forall (f :: * -> *) (m :: * -> *).
(Foldable f, Monad m) =>
f (m Bool) -> m Bool
orM
    [ (Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
==) (Either Blocker Bool -> Bool) -> m (Either Blocker Bool) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (QName -> [Arg Term] -> BlockT m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
QName -> [Arg Term] -> m Bool
isSingletonRecord QName
d [Arg Term]
pars)
    , Term -> m Bool
forall (m :: * -> *). PureTCM m => Term -> m Bool
shouldProject Term
u
    , Term -> m Bool
forall (m :: * -> *). PureTCM m => Term -> m Bool
shouldProject Term
v
    ]
  UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> QName -> [Arg Term] -> UnifyStep
EtaExpandEquation Int
k QName
d [Arg Term]
pars
  where
    shouldProject :: PureTCM m => Term -> m Bool
    shouldProject :: forall (m :: * -> *). PureTCM m => Term -> m Bool
shouldProject = \case
      Def QName
f Elims
es   -> QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
usesCopatterns QName
f
      Con ConHead
c ConInfo
_ Elims
_  -> Maybe (QName, Defn) -> Bool
forall a. Maybe a -> Bool
isJust (Maybe (QName, Defn) -> Bool) -> m (Maybe (QName, Defn)) -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m (Maybe (QName, Defn))
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Maybe (QName, Defn))
isRecordConstructor (ConHead -> QName
conName ConHead
c)

      Var Int
_ Elims
_    -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
      Lam ArgInfo
_ Abs Term
_    -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
      Lit Literal
_      -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
      Pi Dom' Term Type
_ Abs Type
_     -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
      Sort Sort
_     -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
      Level Level
_    -> m Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
      MetaV MetaId
_ Elims
_  -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
      DontCare Term
_ -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
      Dummy String
s Elims
_  -> String -> m Bool
forall (m :: * -> *) a.
(HasCallStack, MonadDebug m) =>
String -> m a
__IMPOSSIBLE_VERBOSE__ String
s

    tel :: Telescope
tel = UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` [Dom' Term (String, Type)] -> Telescope
telFromList (Int -> [Dom' Term (String, Type)] -> [Dom' Term (String, Type)]
forall a. Int -> [a] -> [a]
take Int
k ([Dom' Term (String, Type)] -> [Dom' Term (String, Type)])
-> [Dom' Term (String, Type)] -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList (Telescope -> [Dom' Term (String, Type)])
-> Telescope -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s)

simplifySizesStrategy :: Int -> UnifyStrategy
simplifySizesStrategy :: Int -> UnifyStrategy
simplifySizesStrategy Int
k UnifyState
s = do
  QName -> Bool
isSizeName <- m (QName -> Bool)
forall (m :: * -> *).
(HasOptions m, HasBuiltins m) =>
m (QName -> Bool)
isSizeNameTest
  Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v <- Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
  case Type -> Term
forall t a. Type'' t a -> a
unEl Type
a of
    Def QName
d Elims
_ -> do
      Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> Bool -> m ()
forall a b. (a -> b) -> a -> b
$ QName -> Bool
isSizeName QName
d
      SizeView
su <- Term -> m SizeView
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
Term -> m SizeView
sizeView Term
u
      SizeView
sv <- Term -> m SizeView
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
Term -> m SizeView
sizeView Term
v
      case (SizeView
su, SizeView
sv) of
        (SizeSuc Term
u, SizeSuc Term
v) -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Term -> UnifyStep
StripSizeSuc Int
k Term
u Term
v
        (SizeSuc Term
u, SizeView
SizeInf  ) -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Term -> UnifyStep
StripSizeSuc Int
k Term
u Term
v
        (SizeView
SizeInf  , SizeSuc Term
v) -> UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Term -> UnifyStep
StripSizeSuc Int
k Term
u Term
v
        (SizeView, SizeView)
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero
    Term
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero

injectiveTypeConStrategy :: Int -> UnifyStrategy
injectiveTypeConStrategy :: Int -> UnifyStrategy
injectiveTypeConStrategy Int
k UnifyState
s = do
  Bool
injTyCon <- PragmaOptions -> Bool
optInjectiveTypeConstructors (PragmaOptions -> Bool) -> m PragmaOptions -> m Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
  Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard Bool
injTyCon
  Equality
eq <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality)
-> (Equality -> m Equality) -> Equality -> m Equality
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
  case Equality
eq of
    Equal Dom' Term Type
a u :: Term
u@(Def QName
d Elims
es) v :: Term
v@(Def QName
d' Elims
es') | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' -> do
      -- d must be a data, record or axiom
      Definition
def <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
      Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> Bool -> m ()
forall a b. (a -> b) -> a -> b
$ case Definition -> Defn
theDef Definition
def of
                Datatype{} -> Bool
True
                Record{}   -> Bool
True
                Axiom{}    -> Bool
True
                DataOrRecSig{} -> Bool
True
                AbstractDefn{} -> Bool
False -- True triggers issue #2250
                Function{}   -> Bool
False
                Primitive{}  -> Bool
False
                PrimitiveSort{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
                GeneralizableVar{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
                Constructor{} -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__  -- Never a type!
      let us :: [Arg Term]
us = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
          vs :: [Arg Term]
vs = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es'
      UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> QName -> [Arg Term] -> [Arg Term] -> UnifyStep
TypeConInjectivity Int
k QName
d [Arg Term]
us [Arg Term]
vs
    Equality
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero

injectivePragmaStrategy :: Int -> UnifyStrategy
injectivePragmaStrategy :: Int -> UnifyStrategy
injectivePragmaStrategy Int
k UnifyState
s = do
  Equality
eq <- Equality -> m Equality
forall (m :: * -> *). HasBuiltins m => Equality -> m Equality
eqUnLevel (Equality -> m Equality)
-> (Equality -> m Equality) -> Equality -> m Equality
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> (a -> m b) -> a -> m c
<=< Equality -> m Equality
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (Equality -> m Equality) -> Equality -> m Equality
forall a b. (a -> b) -> a -> b
$ Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
  case Equality
eq of
    Equal Dom' Term Type
a u :: Term
u@(Def QName
d Elims
es) v :: Term
v@(Def QName
d' Elims
es') | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' -> do
      -- d must have an injective pragma
      Definition
def <- QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
      Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ()) -> Bool -> m ()
forall a b. (a -> b) -> a -> b
$ Definition -> Bool
defInjective Definition
def
      let us :: [Arg Term]
us = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
          vs :: [Arg Term]
vs = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es'
      UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> QName -> [Arg Term] -> [Arg Term] -> UnifyStep
TypeConInjectivity Int
k QName
d [Arg Term]
us [Arg Term]
vs
    Equality
_ -> m UnifyStep
forall (m :: * -> *) a. MonadPlus m => m a
mzero

skipIrrelevantStrategy :: Int -> UnifyStrategy
skipIrrelevantStrategy :: Int -> UnifyStrategy
skipIrrelevantStrategy Int
k UnifyState
s = do
  let Equal Dom' Term Type
a Term
_ Term
_ = Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s                               -- reduce not necessary
  Bool -> m ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> m ())
-> (Either Blocker Bool -> Bool) -> Either Blocker Bool -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True) (Either Blocker Bool -> m ()) -> m (Either Blocker Bool) -> m ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (Dom' Term Type -> BlockT m Bool
forall a (m :: * -> *).
(LensRelevance a, LensSort a, PrettyTCM a, PureTCM m,
 MonadBlock m) =>
a -> m Bool
isIrrelevantOrPropM Dom' Term Type
a)  -- reduction takes place here
  -- TODO: do something in case the above is blocked (i.e. `Left b`)
  UnifyStep -> m UnifyStep
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyStep -> m UnifyStep) -> UnifyStep -> m UnifyStep
forall a b. (a -> b) -> a -> b
$ Int -> UnifyStep
SkipIrrelevantEquation Int
k


----------------------------------------------------
-- Actually doing the unification
----------------------------------------------------

data UnifyLogEntry
  = UnificationStep  UnifyState UnifyStep
--  | UnificationDone  UnifyState -- unused?

type UnifyLog = [UnifyLogEntry]

data UnifyOutput = UnifyOutput
  { UnifyOutput -> PatternSubstitution
unifySubst :: PatternSubstitution
  , UnifyOutput -> PatternSubstitution
unifyProof :: PatternSubstitution
  , UnifyOutput -> UnifyLog
unifyLog   :: UnifyLog
  }

instance Semigroup UnifyOutput where
  UnifyOutput
x <> :: UnifyOutput -> UnifyOutput -> UnifyOutput
<> UnifyOutput
y = UnifyOutput
    { unifySubst :: PatternSubstitution
unifySubst = UnifyOutput -> PatternSubstitution
unifySubst UnifyOutput
y PatternSubstitution -> PatternSubstitution -> PatternSubstitution
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` UnifyOutput -> PatternSubstitution
unifySubst UnifyOutput
x
    , unifyProof :: PatternSubstitution
unifyProof = UnifyOutput -> PatternSubstitution
unifyProof UnifyOutput
y PatternSubstitution -> PatternSubstitution -> PatternSubstitution
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` UnifyOutput -> PatternSubstitution
unifyProof UnifyOutput
x
    , unifyLog :: UnifyLog
unifyLog   = UnifyOutput -> UnifyLog
unifyLog UnifyOutput
x UnifyLog -> UnifyLog -> UnifyLog
forall a. [a] -> [a] -> [a]
++ UnifyOutput -> UnifyLog
unifyLog UnifyOutput
y
    }

instance Monoid UnifyOutput where
  mempty :: UnifyOutput
mempty  = PatternSubstitution
-> PatternSubstitution -> UnifyLog -> UnifyOutput
UnifyOutput PatternSubstitution
forall a. Substitution' a
IdS PatternSubstitution
forall a. Substitution' a
IdS []
  mappend :: UnifyOutput -> UnifyOutput -> UnifyOutput
mappend = UnifyOutput -> UnifyOutput -> UnifyOutput
forall a. Semigroup a => a -> a -> a
(<>)

type UnifyLogT m a = WriterT UnifyOutput m a

tellUnifySubst :: MonadWriter UnifyOutput m => PatternSubstitution -> m ()
tellUnifySubst :: forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifySubst PatternSubstitution
sub = UnifyOutput -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell (UnifyOutput -> m ()) -> UnifyOutput -> m ()
forall a b. (a -> b) -> a -> b
$ PatternSubstitution
-> PatternSubstitution -> UnifyLog -> UnifyOutput
UnifyOutput PatternSubstitution
sub PatternSubstitution
forall a. Substitution' a
IdS []

tellUnifyProof :: MonadWriter UnifyOutput m => PatternSubstitution -> m ()
tellUnifyProof :: forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
sub = UnifyOutput -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell (UnifyOutput -> m ()) -> UnifyOutput -> m ()
forall a b. (a -> b) -> a -> b
$ PatternSubstitution
-> PatternSubstitution -> UnifyLog -> UnifyOutput
UnifyOutput PatternSubstitution
forall a. Substitution' a
IdS PatternSubstitution
sub []

writeUnifyLog :: MonadWriter UnifyOutput m => UnifyLogEntry -> m ()
writeUnifyLog :: forall (m :: * -> *).
MonadWriter UnifyOutput m =>
UnifyLogEntry -> m ()
writeUnifyLog UnifyLogEntry
x = UnifyOutput -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell (UnifyOutput -> m ()) -> UnifyOutput -> m ()
forall a b. (a -> b) -> a -> b
$ PatternSubstitution
-> PatternSubstitution -> UnifyLog -> UnifyOutput
UnifyOutput PatternSubstitution
forall a. Substitution' a
IdS PatternSubstitution
forall a. Substitution' a
IdS [UnifyLogEntry
x]

runUnifyLogT :: UnifyLogT m a -> m (a,UnifyOutput)
runUnifyLogT :: forall (m :: * -> *) a. UnifyLogT m a -> m (a, UnifyOutput)
runUnifyLogT = WriterT UnifyOutput m a -> m (a, UnifyOutput)
forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
runWriterT

unifyStep
  :: (PureTCM m, MonadWriter UnifyOutput m)
  => UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)

unifyStep :: forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
unifyStep UnifyState
s Deletion{ deleteAt :: UnifyStep -> Int
deleteAt = Int
k , deleteType :: UnifyStep -> Type
deleteType = Type
a , deleteLeft :: UnifyStep -> Term
deleteLeft = Term
u , deleteRight :: UnifyStep -> Term
deleteRight = Term
v } = do
    -- Check definitional equality of u and v
    Either Blocker Bool
isReflexive <- Telescope -> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m (Either Blocker Bool) -> m (Either Blocker Bool))
-> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (BlockT m Bool -> m (Either Blocker Bool))
-> BlockT m Bool -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ Type -> Term -> Term -> BlockT m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
Type -> Term -> Term -> m Bool
pureEqualTerm Type
a Term
u Term
v
    Bool
withoutK <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
withoutKOption
    Bool
splitOnStrict <- (TCEnv -> Bool) -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> Bool
envSplitOnStrict
    case Either Blocker Bool
isReflexive of
      Left Blocker
block   -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block
      Right Bool
False  -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []
      Right Bool
True | Bool
withoutK Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
splitOnStrict
                   -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Term -> UnificationFailure
UnifyReflexiveEq (UnifyState -> Telescope
varTel UnifyState
s) Type
a Term
u]
      Right Bool
True   -> do
        let (UnifyState
s', PatternSubstitution
sigma) = Int -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq Int
k Term
u UnifyState
s
        PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
sigma
        UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> m UnifyState -> m (UnificationResult' UnifyState)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Telescope -> m Telescope) -> UnifyState -> m UnifyState
Lens' Telescope UnifyState
lensEqTel Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce UnifyState
s'

unifyStep UnifyState
s step :: UnifyStep
step@Solution{} = RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
solutionStep RetryNormalised
RetryNormalised UnifyState
s UnifyStep
step

unifyStep UnifyState
s (Injectivity Int
k Type
a QName
d [Arg Term]
pars [Arg Term]
ixs ConHead
c) = do
  m Bool
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> m Bool) -> QName -> m Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
c) (UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (m (UnificationResult' UnifyState)
 -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
  Bool
withoutK <- m Bool
forall (m :: * -> *). HasOptions m => m Bool
withoutKOption

  -- Split equation telescope into parts before and after current equation
  let ([Dom' Term (String, Type)]
eqListTel1, Dom' Term (String, Type)
_ : [Dom' Term (String, Type)]
eqListTel2) = Int
-> [Dom' Term (String, Type)]
-> ([Dom' Term (String, Type)], [Dom' Term (String, Type)])
forall a. Int -> [a] -> ([a], [a])
splitAt Int
k ([Dom' Term (String, Type)]
 -> ([Dom' Term (String, Type)], [Dom' Term (String, Type)]))
-> [Dom' Term (String, Type)]
-> ([Dom' Term (String, Type)], [Dom' Term (String, Type)])
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList (Telescope -> [Dom' Term (String, Type)])
-> Telescope -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
      (Telescope
eqTel1, Telescope
eqTel2) = ([Dom' Term (String, Type)] -> Telescope
telFromList [Dom' Term (String, Type)]
eqListTel1, [Dom' Term (String, Type)] -> Telescope
telFromList [Dom' Term (String, Type)]
eqListTel2)

  -- Get constructor telescope and target indices
  Definition
cdef  <- ConHead -> m Definition
forall (m :: * -> *). HasConstInfo m => ConHead -> m Definition
getConInfo ConHead
c
  let ctype :: Type
ctype  = Definition -> Type
defType Definition
cdef Type -> [Arg Term] -> Type
`piApply` [Arg Term]
pars
  Telescope -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel1) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    TCMT IO Doc
"Constructor type: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
ctype
  TelV Telescope
ctel Type
ctarget <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
ctype
  let cixs :: [Arg Term]
cixs = case Type -> Term
forall t a. Type'' t a -> a
unEl Type
ctarget of
               Def QName
d' Elims
es | QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' ->
                 let args :: [Arg Term]
args = [Arg Term] -> Maybe [Arg Term] -> [Arg Term]
forall a. a -> Maybe a -> a
fromMaybe [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe [Arg Term] -> [Arg Term]) -> Maybe [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
                 in  Int -> [Arg Term] -> [Arg Term]
forall a. Int -> [a] -> [a]
drop ([Arg Term] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Arg Term]
pars) [Arg Term]
args
               Term
_ -> [Arg Term]
forall a. HasCallStack => a
__IMPOSSIBLE__

  -- Get index telescope of the datatype
  Type
dtype    <- (Type -> [Arg Term] -> Type
`piApply` [Arg Term]
pars) (Type -> Type) -> (Definition -> Type) -> Definition -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Definition -> Type
defType (Definition -> Type) -> m Definition -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
  Telescope -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel1) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
40 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$
    TCMT IO Doc
"Datatype type: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
dtype

  -- This is where the magic of higher-dimensional unification happens
  -- We need to generalize the indices `ixs` to the target indices of the
  -- constructor `cixs`. This is done by calling the unification algorithm
  -- recursively (this doesn't get stuck in a loop because a type should
  -- never be indexed over itself). Note the similarity with the
  -- computeNeighbourhood function in Agda.TypeChecking.Coverage.
  let hduTel :: Telescope
hduTel = Telescope
eqTel1 Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
ctel
      notforced :: [IsForced]
notforced = Int -> IsForced -> [IsForced]
forall a. Int -> a -> [a]
replicate (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
hduTel) IsForced
NotForced
  UnificationResult
res <- Telescope -> m UnificationResult -> m UnificationResult
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m UnificationResult -> m UnificationResult)
-> m UnificationResult -> m UnificationResult
forall a b. (a -> b) -> a -> b
$ Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> m UnificationResult
forall (m :: * -> *).
PureTCM m =>
Telescope
-> FlexibleVars
-> Type
-> [Arg Term]
-> [Arg Term]
-> m UnificationResult
unifyIndices'
           Telescope
hduTel
           ([IsForced] -> Telescope -> FlexibleVars
allFlexVars [IsForced]
notforced Telescope
hduTel)
           (Int -> Type -> Type
forall a. Subst a => Int -> a -> a
raise (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
ctel) Type
dtype)
           (Int -> [Arg Term] -> [Arg Term]
forall a. Subst a => Int -> a -> a
raise (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
ctel) [Arg Term]
ixs)
           [Arg Term]
cixs
  case UnificationResult
res of
    -- Higher-dimensional unification can never end in a conflict,
    -- because `cong c1 ...` and `cong c2 ...` don't even have the
    -- same type for distinct constructors c1 and c2.
    NoUnify NegativeUnification
_ -> m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__

    -- Higher-dimensional unification is blocked: propagate
    UnifyBlocked Blocker
block -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block

    -- Higher-dimensional unification has failed. If not --without-K,
    -- we can simply ignore the higher-dimensional equations and
    -- simplify the equation as in the non-indexed case.
    UnifyStuck [UnificationFailure]
_ | Bool -> Bool
not Bool
withoutK -> do
      -- using the same variable names as in the case where hdu succeeds.
      let eqTel1' :: Telescope
eqTel1' = Telescope
eqTel1 Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
ctel
          rho1 :: PatternSubstitution
rho1    = Int -> PatternSubstitution
forall a. Int -> Substitution' a
raiseS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
ctel)
          ceq :: Pattern' DBPatVar
ceq     = ConHead
-> ConPatternInfo
-> [NamedArg (Pattern' DBPatVar)]
-> Pattern' DBPatVar
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
noConPatternInfo ([NamedArg (Pattern' DBPatVar)] -> Pattern' DBPatVar)
-> [NamedArg (Pattern' DBPatVar)] -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs Telescope
ctel
          rho3 :: PatternSubstitution
rho3    = Pattern' DBPatVar -> PatternSubstitution -> PatternSubstitution
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Pattern' DBPatVar
ceq PatternSubstitution
rho1
          eqTel2' :: Telescope
eqTel2' = PatternSubstitution -> Telescope -> Telescope
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho3 Telescope
eqTel2
          eqTel' :: Telescope
eqTel'  = Telescope
eqTel1' Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel2'
          rho :: PatternSubstitution
rho     = Int -> PatternSubstitution -> PatternSubstitution
forall a. Int -> Substitution' a -> Substitution' a
liftS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel2) PatternSubstitution
rho3

      PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
rho

      Telescope
eqTel' <- Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Telescope
eqTel'

      -- Compute new lhs and rhs by matching the old ones against rho
      ([Arg Term]
lhs', [Arg Term]
rhs') <- do
        let ps :: [NamedArg (Pattern' DBPatVar)]
ps = Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst PatternSubstitution
Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
rho ([NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs (Telescope -> [NamedArg (Pattern' DBPatVar)])
-> Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
        (Match Term
lhsMatch, [Arg Term]
_) <- [NamedArg (Pattern' DBPatVar)]
-> [Arg Term] -> m (Match Term, [Arg Term])
forall (m :: * -> *).
MonadMatch m =>
[NamedArg (Pattern' DBPatVar)]
-> [Arg Term] -> m (Match Term, [Arg Term])
Match.matchPatterns [NamedArg (Pattern' DBPatVar)]
ps ([Arg Term] -> m (Match Term, [Arg Term]))
-> [Arg Term] -> m (Match Term, [Arg Term])
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqLHS UnifyState
s
        (Match Term
rhsMatch, [Arg Term]
_) <- [NamedArg (Pattern' DBPatVar)]
-> [Arg Term] -> m (Match Term, [Arg Term])
forall (m :: * -> *).
MonadMatch m =>
[NamedArg (Pattern' DBPatVar)]
-> [Arg Term] -> m (Match Term, [Arg Term])
Match.matchPatterns [NamedArg (Pattern' DBPatVar)]
ps ([Arg Term] -> m (Match Term, [Arg Term]))
-> [Arg Term] -> m (Match Term, [Arg Term])
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqRHS UnifyState
s
        case (Match Term
lhsMatch, Match Term
rhsMatch) of
          (Match.Yes Simplification
_ IntMap (Arg Term)
lhs', Match.Yes Simplification
_ IntMap (Arg Term)
rhs') -> ([Arg Term], [Arg Term]) -> m ([Arg Term], [Arg Term])
forall (m :: * -> *) a. Monad m => a -> m a
return
            ([Arg Term] -> [Arg Term]
forall a. [a] -> [a]
reverse ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Empty -> Int -> IntMap (Arg Term) -> [Arg Term]
forall a. Empty -> Int -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel') IntMap (Arg Term)
lhs',
             [Arg Term] -> [Arg Term]
forall a. [a] -> [a]
reverse ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Empty -> Int -> IntMap (Arg Term) -> [Arg Term]
forall a. Empty -> Int -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel') IntMap (Arg Term)
rhs')
          (Match Term, Match Term)
_ -> m ([Arg Term], [Arg Term])
forall a. HasCallStack => a
__IMPOSSIBLE__

      UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> UnifyState -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s { eqTel :: Telescope
eqTel = Telescope
eqTel' , eqLHS :: [Arg Term]
eqLHS = [Arg Term]
lhs' , eqRHS :: [Arg Term]
eqRHS = [Arg Term]
rhs' }


    UnifyStuck [UnificationFailure]
_ -> let n :: Int
n           = UnifyState -> Int
eqCount UnifyState
s
                        Equal Dom{unDom :: forall t e. Dom' t e -> e
unDom = Type
a} Term
u Term
v = Int -> UnifyState -> Equality
getEquality Int
k UnifyState
s
                    in UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope
-> Type -> Term -> Term -> [Arg Term] -> UnificationFailure
UnifyIndicesNotVars
                         (UnifyState -> Telescope
varTel UnifyState
s Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` UnifyState -> Telescope
eqTel UnifyState
s) Type
a
                         (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
n Term
u) (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
n Term
v) (Int -> [Arg Term] -> [Arg Term]
forall a. Subst a => Int -> a -> a
raise (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
k) [Arg Term]
ixs)]

    Unifies (Telescope
eqTel1', PatternSubstitution
rho0, [NamedArg (Pattern' DBPatVar)]
_) -> do
      -- Split ps0 into parts for eqTel1 and ctel
      let (PatternSubstitution
rho1, PatternSubstitution
rho2) = Int
-> PatternSubstitution
-> (PatternSubstitution, PatternSubstitution)
forall a.
Int -> Substitution' a -> (Substitution' a, Substitution' a)
splitS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
ctel) PatternSubstitution
rho0

      -- Compute new equation telescope context and substitution
      let ceq :: Pattern' DBPatVar
ceq     = ConHead
-> ConPatternInfo
-> [NamedArg (Pattern' DBPatVar)]
-> Pattern' DBPatVar
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
noConPatternInfo ([NamedArg (Pattern' DBPatVar)] -> Pattern' DBPatVar)
-> [NamedArg (Pattern' DBPatVar)] -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst PatternSubstitution
Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
rho2 ([NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs Telescope
ctel
          rho3 :: PatternSubstitution
rho3    = Pattern' DBPatVar -> PatternSubstitution -> PatternSubstitution
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Pattern' DBPatVar
ceq PatternSubstitution
rho1
          eqTel2' :: Telescope
eqTel2' = PatternSubstitution -> Telescope -> Telescope
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho3 Telescope
eqTel2
          eqTel' :: Telescope
eqTel'  = Telescope
eqTel1' Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
eqTel2'
          rho :: PatternSubstitution
rho     = Int -> PatternSubstitution -> PatternSubstitution
forall a. Int -> Substitution' a -> Substitution' a
liftS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel2) PatternSubstitution
rho3

      PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
rho

      Telescope
eqTel' <- Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Telescope
eqTel'

      -- Compute new lhs and rhs by matching the old ones against rho
      ([Arg Term]
lhs', [Arg Term]
rhs') <- do
        let ps :: [NamedArg (Pattern' DBPatVar)]
ps = Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst PatternSubstitution
Substitution' (SubstArg [NamedArg (Pattern' DBPatVar)])
rho ([NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)])
-> [NamedArg (Pattern' DBPatVar)] -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs (Telescope -> [NamedArg (Pattern' DBPatVar)])
-> Telescope -> [NamedArg (Pattern' DBPatVar)]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
        (Match Term
lhsMatch, [Arg Term]
_) <- [NamedArg (Pattern' DBPatVar)]
-> [Arg Term] -> m (Match Term, [Arg Term])
forall (m :: * -> *).
MonadMatch m =>
[NamedArg (Pattern' DBPatVar)]
-> [Arg Term] -> m (Match Term, [Arg Term])
Match.matchPatterns [NamedArg (Pattern' DBPatVar)]
ps ([Arg Term] -> m (Match Term, [Arg Term]))
-> [Arg Term] -> m (Match Term, [Arg Term])
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqLHS UnifyState
s
        (Match Term
rhsMatch, [Arg Term]
_) <- [NamedArg (Pattern' DBPatVar)]
-> [Arg Term] -> m (Match Term, [Arg Term])
forall (m :: * -> *).
MonadMatch m =>
[NamedArg (Pattern' DBPatVar)]
-> [Arg Term] -> m (Match Term, [Arg Term])
Match.matchPatterns [NamedArg (Pattern' DBPatVar)]
ps ([Arg Term] -> m (Match Term, [Arg Term]))
-> [Arg Term] -> m (Match Term, [Arg Term])
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqRHS UnifyState
s
        case (Match Term
lhsMatch, Match Term
rhsMatch) of
          (Match.Yes Simplification
_ IntMap (Arg Term)
lhs', Match.Yes Simplification
_ IntMap (Arg Term)
rhs') -> ([Arg Term], [Arg Term]) -> m ([Arg Term], [Arg Term])
forall (m :: * -> *) a. Monad m => a -> m a
return
            ([Arg Term] -> [Arg Term]
forall a. [a] -> [a]
reverse ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Empty -> Int -> IntMap (Arg Term) -> [Arg Term]
forall a. Empty -> Int -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel') IntMap (Arg Term)
lhs',
             [Arg Term] -> [Arg Term]
forall a. [a] -> [a]
reverse ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ Empty -> Int -> IntMap (Arg Term) -> [Arg Term]
forall a. Empty -> Int -> IntMap (Arg a) -> [Arg a]
Match.matchedArgs Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
eqTel') IntMap (Arg Term)
rhs')
          (Match Term, Match Term)
_ -> m ([Arg Term], [Arg Term])
forall a. HasCallStack => a
__IMPOSSIBLE__

      UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> UnifyState -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s { eqTel :: Telescope
eqTel = Telescope
eqTel' , eqLHS :: [Arg Term]
eqLHS = [Arg Term]
lhs' , eqRHS :: [Arg Term]
eqRHS = [Arg Term]
rhs' }

unifyStep UnifyState
s Conflict
  { conflictLeft :: UnifyStep -> Term
conflictLeft  = Term
u
  , conflictRight :: UnifyStep -> Term
conflictRight = Term
v
  } =
  case Term
u of
    Con ConHead
h ConInfo
_ Elims
_ -> do
      m Bool
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> m Bool) -> QName -> m Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
h) (UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (m (UnificationResult' UnifyState)
 -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
        UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Term -> Term -> NegativeUnification
UnifyConflict (UnifyState -> Telescope
varTel UnifyState
s) Term
u Term
v
    Term
_ -> m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__
unifyStep UnifyState
s Cycle
  { cycleVar :: UnifyStep -> Int
cycleVar        = Int
i
  , cycleOccursIn :: UnifyStep -> Term
cycleOccursIn   = Term
u
  } =
  case Term
u of
    Con ConHead
h ConInfo
_ Elims
_ -> do
      m Bool
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> m Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
consOfHIT (QName -> m Bool) -> QName -> m Bool
forall a b. (a -> b) -> a -> b
$ ConHead -> QName
conName ConHead
h) (UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []) (m (UnificationResult' UnifyState)
 -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ do
        UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Int -> Term -> NegativeUnification
UnifyCycle (UnifyState -> Telescope
varTel UnifyState
s) Int
i Term
u
    Term
_ -> m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__

unifyStep UnifyState
s EtaExpandVar{ expandVar :: UnifyStep -> FlexibleVar Int
expandVar = FlexibleVar Int
fi, expandVarRecordType :: UnifyStep -> QName
expandVarRecordType = QName
d , expandVarParameters :: UnifyStep -> [Arg Term]
expandVarParameters = [Arg Term]
pars } = do
  Defn
recd <- Defn -> Maybe Defn -> Defn
forall a. a -> Maybe a -> a
fromMaybe Defn
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Defn -> Defn) -> m (Maybe Defn) -> m Defn
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m (Maybe Defn)
forall (m :: * -> *). HasConstInfo m => QName -> m (Maybe Defn)
isRecord QName
d
  let delta :: Telescope
delta = Defn -> Telescope
recTel Defn
recd Telescope -> [Arg Term] -> Telescope
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Arg Term]
pars
      c :: ConHead
c     = Defn -> ConHead
recConHead Defn
recd
  let nfields :: Int
nfields         = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
delta
      (Telescope
varTel', PatternSubstitution
rho)  = Telescope
-> Int -> Telescope -> ConHead -> (Telescope, PatternSubstitution)
expandTelescopeVar (UnifyState -> Telescope
varTel UnifyState
s) (Int
mInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
i) Telescope
delta ConHead
c
      projectFlexible :: FlexibleVars
projectFlexible = [ ArgInfo
-> IsForced
-> FlexibleVarKind
-> Maybe Int
-> Int
-> FlexibleVar Int
forall a.
ArgInfo
-> IsForced -> FlexibleVarKind -> Maybe Int -> a -> FlexibleVar a
FlexibleVar (FlexibleVar Int -> ArgInfo
forall a. LensArgInfo a => a -> ArgInfo
getArgInfo FlexibleVar Int
fi) (FlexibleVar Int -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar Int
fi) (Int -> FlexibleVarKind
projFlexKind Int
j) (FlexibleVar Int -> Maybe Int
forall a. FlexibleVar a -> Maybe Int
flexPos FlexibleVar Int
fi) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
j) | Int
j <- [Int
0..Int
nfieldsInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1] ]
  PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifySubst (PatternSubstitution -> m ()) -> PatternSubstitution -> m ()
forall a b. (a -> b) -> a -> b
$ PatternSubstitution
rho
  UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> UnifyState -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ UState
    { varTel :: Telescope
varTel   = Telescope
varTel'
    , flexVars :: FlexibleVars
flexVars = FlexibleVars
projectFlexible FlexibleVars -> FlexibleVars -> FlexibleVars
forall a. [a] -> [a] -> [a]
++ Int -> FlexibleVars -> FlexibleVars
liftFlexibles Int
nfields (UnifyState -> FlexibleVars
flexVars UnifyState
s)
    , eqTel :: Telescope
eqTel    = PatternSubstitution -> Telescope -> Telescope
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho (Telescope -> Telescope) -> Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
    , eqLHS :: [Arg Term]
eqLHS    = PatternSubstitution -> [Arg Term] -> [Arg Term]
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqLHS UnifyState
s
    , eqRHS :: [Arg Term]
eqRHS    = PatternSubstitution -> [Arg Term] -> [Arg Term]
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqRHS UnifyState
s
    }
  where
    i :: Int
i = FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar FlexibleVar Int
fi
    m :: Int
m = UnifyState -> Int
varCount UnifyState
s

    projFlexKind :: Int -> FlexibleVarKind
    projFlexKind :: Int -> FlexibleVarKind
projFlexKind Int
j = case FlexibleVar Int -> FlexibleVarKind
forall a. FlexibleVar a -> FlexibleVarKind
flexKind FlexibleVar Int
fi of
      RecordFlex [FlexibleVarKind]
ks -> FlexibleVarKind -> [FlexibleVarKind] -> Int -> FlexibleVarKind
forall a. a -> [a] -> Int -> a
indexWithDefault FlexibleVarKind
ImplicitFlex [FlexibleVarKind]
ks Int
j
      FlexibleVarKind
ImplicitFlex  -> FlexibleVarKind
ImplicitFlex
      FlexibleVarKind
DotFlex       -> FlexibleVarKind
DotFlex
      FlexibleVarKind
OtherFlex     -> FlexibleVarKind
OtherFlex

    liftFlexible :: Int -> Int -> Maybe Int
    liftFlexible :: Int -> Int -> Maybe Int
liftFlexible Int
n Int
j = if Int
j Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
i then Maybe Int
forall a. Maybe a
Nothing else Int -> Maybe Int
forall a. a -> Maybe a
Just (if Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
i then Int
j Int -> Int -> Int
forall a. Num a => a -> a -> a
+ (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) else Int
j)

    liftFlexibles :: Int -> FlexibleVars -> FlexibleVars
    liftFlexibles :: Int -> FlexibleVars -> FlexibleVars
liftFlexibles Int
n FlexibleVars
fs = (FlexibleVar Int -> Maybe (FlexibleVar Int))
-> FlexibleVars -> FlexibleVars
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe ((Int -> Maybe Int) -> FlexibleVar Int -> Maybe (FlexibleVar Int)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse ((Int -> Maybe Int) -> FlexibleVar Int -> Maybe (FlexibleVar Int))
-> (Int -> Maybe Int) -> FlexibleVar Int -> Maybe (FlexibleVar Int)
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Maybe Int
liftFlexible Int
n) FlexibleVars
fs

unifyStep UnifyState
s EtaExpandEquation{ expandAt :: UnifyStep -> Int
expandAt = Int
k, expandRecordType :: UnifyStep -> QName
expandRecordType = QName
d, expandParameters :: UnifyStep -> [Arg Term]
expandParameters = [Arg Term]
pars } = do
  Defn
recd  <- Defn -> Maybe Defn -> Defn
forall a. a -> Maybe a -> a
fromMaybe Defn
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Defn -> Defn) -> m (Maybe Defn) -> m Defn
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m (Maybe Defn)
forall (m :: * -> *). HasConstInfo m => QName -> m (Maybe Defn)
isRecord QName
d
  let delta :: Telescope
delta = Defn -> Telescope
recTel Defn
recd Telescope -> [Arg Term] -> Telescope
forall t. Apply t => t -> [Arg Term] -> t
`apply` [Arg Term]
pars
      c :: ConHead
c     = Defn -> ConHead
recConHead Defn
recd
  [Arg Term]
lhs   <- [Arg Term] -> m [Arg Term]
expandKth ([Arg Term] -> m [Arg Term]) -> [Arg Term] -> m [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqLHS UnifyState
s
  [Arg Term]
rhs   <- [Arg Term] -> m [Arg Term]
expandKth ([Arg Term] -> m [Arg Term]) -> [Arg Term] -> m [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqRHS UnifyState
s
  let (Telescope
tel, PatternSubstitution
sigma) = Telescope
-> Int -> Telescope -> ConHead -> (Telescope, PatternSubstitution)
expandTelescopeVar (UnifyState -> Telescope
eqTel UnifyState
s) Int
k Telescope
delta ConHead
c
  PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
sigma
  UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> m UnifyState -> m (UnificationResult' UnifyState)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
   (Telescope -> m Telescope) -> UnifyState -> m UnifyState
Lens' Telescope UnifyState
lensEqTel Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (UnifyState -> m UnifyState) -> UnifyState -> m UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s
    { eqTel :: Telescope
eqTel    = Telescope
tel
    , eqLHS :: [Arg Term]
eqLHS    = [Arg Term]
lhs
    , eqRHS :: [Arg Term]
eqRHS    = [Arg Term]
rhs
    }
  where
    expandKth :: [Arg Term] -> m [Arg Term]
expandKth [Arg Term]
us = do
      let ([Arg Term]
us1,Arg Term
v:[Arg Term]
us2) = ([Arg Term], [Arg Term])
-> Maybe ([Arg Term], [Arg Term]) -> ([Arg Term], [Arg Term])
forall a. a -> Maybe a -> a
fromMaybe ([Arg Term], [Arg Term])
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe ([Arg Term], [Arg Term]) -> ([Arg Term], [Arg Term]))
-> Maybe ([Arg Term], [Arg Term]) -> ([Arg Term], [Arg Term])
forall a b. (a -> b) -> a -> b
$ Int -> [Arg Term] -> Maybe ([Arg Term], [Arg Term])
forall n a. Integral n => n -> [a] -> Maybe ([a], [a])
splitExactlyAt Int
k [Arg Term]
us
      [Arg Term]
vs <- (Telescope, [Arg Term]) -> [Arg Term]
forall a b. (a, b) -> b
snd ((Telescope, [Arg Term]) -> [Arg Term])
-> m (Telescope, [Arg Term]) -> m [Arg Term]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> [Arg Term] -> Term -> m (Telescope, [Arg Term])
forall (m :: * -> *).
(HasConstInfo m, MonadDebug m, ReadTCState m) =>
QName -> [Arg Term] -> Term -> m (Telescope, [Arg Term])
etaExpandRecord QName
d [Arg Term]
pars (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
v)
      [Arg Term]
vs <- [Arg Term] -> m [Arg Term]
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce [Arg Term]
vs
      [Arg Term] -> m [Arg Term]
forall (m :: * -> *) a. Monad m => a -> m a
return ([Arg Term] -> m [Arg Term]) -> [Arg Term] -> m [Arg Term]
forall a b. (a -> b) -> a -> b
$ [Arg Term]
us1 [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ [Arg Term]
vs [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ [Arg Term]
us2

unifyStep UnifyState
s LitConflict
  { litType :: UnifyStep -> Type
litType          = Type
a
  , litConflictLeft :: UnifyStep -> Literal
litConflictLeft  = Literal
l
  , litConflictRight :: UnifyStep -> Literal
litConflictRight = Literal
l'
  } = UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify (NegativeUnification -> UnificationResult' UnifyState)
-> NegativeUnification -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Telescope -> Term -> Term -> NegativeUnification
UnifyConflict (UnifyState -> Telescope
varTel UnifyState
s) (Literal -> Term
Lit Literal
l) (Literal -> Term
Lit Literal
l')

unifyStep UnifyState
s (StripSizeSuc Int
k Term
u Term
v) = do
  Type
sizeTy <- m Type
forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
m Type
sizeType
  Term
sizeSu <- Int -> Term -> m Term
forall (m :: * -> *). HasBuiltins m => Int -> Term -> m Term
sizeSuc Int
1 (Int -> Term
var Int
0)
  let n :: Int
n          = UnifyState -> Int
eqCount UnifyState
s
      sub :: Substitution' Term
sub        = Int -> Substitution' Term -> Substitution' Term
forall a. Int -> Substitution' a -> Substitution' a
liftS (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
kInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Substitution' Term -> Substitution' Term)
-> Substitution' Term -> Substitution' Term
forall a b. (a -> b) -> a -> b
$ Term -> Substitution' Term -> Substitution' Term
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Term
sizeSu (Substitution' Term -> Substitution' Term)
-> Substitution' Term -> Substitution' Term
forall a b. (a -> b) -> a -> b
$ Int -> Substitution' Term
forall a. Int -> Substitution' a
raiseS Int
1
      eqFlatTel :: [Dom' Term Type]
eqFlatTel  = Telescope -> [Dom' Term Type]
forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel (Telescope -> [Dom' Term Type]) -> Telescope -> [Dom' Term Type]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s
      eqFlatTel' :: [Dom' Term Type]
eqFlatTel' = Substitution' (SubstArg [Dom' Term Type])
-> [Dom' Term Type] -> [Dom' Term Type]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' Term
Substitution' (SubstArg [Dom' Term Type])
sub ([Dom' Term Type] -> [Dom' Term Type])
-> [Dom' Term Type] -> [Dom' Term Type]
forall a b. (a -> b) -> a -> b
$ Int
-> (Dom' Term Type -> Dom' Term Type)
-> [Dom' Term Type]
-> [Dom' Term Type]
forall a. Int -> (a -> a) -> [a] -> [a]
updateAt Int
k ((Type -> Type) -> Dom' Term Type -> Dom' Term Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Type -> Type) -> Dom' Term Type -> Dom' Term Type)
-> (Type -> Type) -> Dom' Term Type -> Dom' Term Type
forall a b. (a -> b) -> a -> b
$ Type -> Type -> Type
forall a b. a -> b -> a
const Type
sizeTy) ([Dom' Term Type] -> [Dom' Term Type])
-> [Dom' Term Type] -> [Dom' Term Type]
forall a b. (a -> b) -> a -> b
$ [Dom' Term Type]
eqFlatTel
      eqTel' :: Telescope
eqTel'     = [String] -> [Dom' Term Type] -> Telescope
unflattenTel (Telescope -> [String]
teleNames (Telescope -> [String]) -> Telescope -> [String]
forall a b. (a -> b) -> a -> b
$ UnifyState -> Telescope
eqTel UnifyState
s) [Dom' Term Type]
eqFlatTel'
  -- TODO: tellUnifyProof sub
  -- but sizeSu is not a constructor, so sub is not a PatternSubstitution!
  UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> UnifyState -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s
    { eqTel :: Telescope
eqTel = Telescope
eqTel'
    , eqLHS :: [Arg Term]
eqLHS = Int -> (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a. Int -> (a -> a) -> [a] -> [a]
updateAt Int
k (Arg Term -> Arg Term -> Arg Term
forall a b. a -> b -> a
const (Arg Term -> Arg Term -> Arg Term)
-> Arg Term -> Arg Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
u) ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqLHS UnifyState
s
    , eqRHS :: [Arg Term]
eqRHS = Int -> (Arg Term -> Arg Term) -> [Arg Term] -> [Arg Term]
forall a. Int -> (a -> a) -> [a] -> [a]
updateAt Int
k (Arg Term -> Arg Term -> Arg Term
forall a b. a -> b -> a
const (Arg Term -> Arg Term -> Arg Term)
-> Arg Term -> Arg Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
v) ([Arg Term] -> [Arg Term]) -> [Arg Term] -> [Arg Term]
forall a b. (a -> b) -> a -> b
$ UnifyState -> [Arg Term]
eqRHS UnifyState
s
    }

unifyStep UnifyState
s (SkipIrrelevantEquation Int
k) = do
  let lhs :: [Arg Term]
lhs = UnifyState -> [Arg Term]
eqLHS UnifyState
s
      (UnifyState
s', PatternSubstitution
sigma) = Int -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq Int
k (Term -> Term
DontCare (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg (Arg Term -> Term) -> Arg Term -> Term
forall a b. (a -> b) -> a -> b
$ Arg Term -> [Arg Term] -> Int -> Arg Term
forall a. a -> [a] -> Int -> a
indexWithDefault Arg Term
forall a. HasCallStack => a
__IMPOSSIBLE__ [Arg Term]
lhs Int
k) UnifyState
s
  PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
sigma
  UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s'

unifyStep UnifyState
s (TypeConInjectivity Int
k QName
d [Arg Term]
us [Arg Term]
vs) = do
  Type
dtype <- Definition -> Type
defType (Definition -> Type) -> m Definition -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> m Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
  TelV Telescope
dtel Type
_ <- Type -> m (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
dtype
  let deq :: Term
deq = QName -> Elims -> Term
Def QName
d (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim) -> [Arg Term] -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply ([Arg Term] -> Elims) -> [Arg Term] -> Elims
forall a b. (a -> b) -> a -> b
$ Telescope -> [Arg Term]
forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Telescope
dtel
  -- TODO: tellUnifyProof ???
  -- but d is not a constructor...
  UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies (UnifyState -> UnificationResult' UnifyState)
-> m UnifyState -> m (UnificationResult' UnifyState)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
   (Telescope -> m Telescope) -> UnifyState -> m UnifyState
Lens' Telescope UnifyState
lensEqTel Telescope -> m Telescope
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (UnifyState -> m UnifyState) -> UnifyState -> m UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s
    { eqTel :: Telescope
eqTel = Telescope
dtel Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Int -> Telescope -> Term -> Telescope
applyUnder Int
k (UnifyState -> Telescope
eqTel UnifyState
s) (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
k Term
deq)
    , eqLHS :: [Arg Term]
eqLHS = [Arg Term]
us [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ Int -> [Arg Term] -> [Arg Term]
forall a. Int -> [a] -> [a]
dropAt Int
k (UnifyState -> [Arg Term]
eqLHS UnifyState
s)
    , eqRHS :: [Arg Term]
eqRHS = [Arg Term]
vs [Arg Term] -> [Arg Term] -> [Arg Term]
forall a. [a] -> [a] -> [a]
++ Int -> [Arg Term] -> [Arg Term]
forall a. Int -> [a] -> [a]
dropAt Int
k (UnifyState -> [Arg Term]
eqRHS UnifyState
s)
    }

data RetryNormalised = RetryNormalised | DontRetryNormalised
  deriving (RetryNormalised -> RetryNormalised -> Bool
(RetryNormalised -> RetryNormalised -> Bool)
-> (RetryNormalised -> RetryNormalised -> Bool)
-> Eq RetryNormalised
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: RetryNormalised -> RetryNormalised -> Bool
$c/= :: RetryNormalised -> RetryNormalised -> Bool
== :: RetryNormalised -> RetryNormalised -> Bool
$c== :: RetryNormalised -> RetryNormalised -> Bool
Eq, Int -> RetryNormalised -> ShowS
[RetryNormalised] -> ShowS
RetryNormalised -> String
(Int -> RetryNormalised -> ShowS)
-> (RetryNormalised -> String)
-> ([RetryNormalised] -> ShowS)
-> Show RetryNormalised
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [RetryNormalised] -> ShowS
$cshowList :: [RetryNormalised] -> ShowS
show :: RetryNormalised -> String
$cshow :: RetryNormalised -> String
showsPrec :: Int -> RetryNormalised -> ShowS
$cshowsPrec :: Int -> RetryNormalised -> ShowS
Show)

solutionStep
  :: (PureTCM m, MonadWriter UnifyOutput m)
  => RetryNormalised
  -> UnifyState
  -> UnifyStep
  -> m (UnificationResult' UnifyState)
solutionStep :: forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
solutionStep RetryNormalised
retry UnifyState
s
  step :: UnifyStep
step@Solution{ solutionAt :: UnifyStep -> Int
solutionAt   = Int
k
               , solutionType :: UnifyStep -> Dom' Term Type
solutionType = dom :: Dom' Term Type
dom@Dom{ unDom :: forall t e. Dom' t e -> e
unDom = Type
a }
               , solutionVar :: UnifyStep -> FlexibleVar Int
solutionVar  = fi :: FlexibleVar Int
fi@FlexibleVar{ flexVar :: forall a. FlexibleVar a -> a
flexVar = Int
i }
               , solutionTerm :: UnifyStep -> Term
solutionTerm = Term
u } = do
  let m :: Int
m = UnifyState -> Int
varCount UnifyState
s

  -- Now we have to be careful about forced variables in `u`. If they appear
  -- in pattern positions we need to bind them there rather in their forced positions. We can safely
  -- ignore non-pattern positions and forced pattern positions, because in that case there will be
  -- other equations where the variable can be bound.
  -- NOTE: If we're doing make-case we ignore forced variables. This is safe since we take the
  -- result of unification and build user clauses that will be checked again with forcing turned on.
  Bool
inMakeCase <- Lens' Bool TCEnv -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => Lens' a TCEnv -> m a
viewTC Lens' Bool TCEnv
eMakeCase
  let forcedVars :: IntMap Modality
forcedVars | Bool
inMakeCase = IntMap Modality
forall a. IntMap a
IntMap.empty
                 | Bool
otherwise  = [(Int, Modality)] -> IntMap Modality
forall a. [(Int, a)] -> IntMap a
IntMap.fromList [ (FlexibleVar Int -> Int
forall a. FlexibleVar a -> a
flexVar FlexibleVar Int
fi, FlexibleVar Int -> Modality
forall a. LensModality a => a -> Modality
getModality FlexibleVar Int
fi) | FlexibleVar Int
fi <- UnifyState -> FlexibleVars
flexVars UnifyState
s,
                                                                                 FlexibleVar Int -> IsForced
forall a. FlexibleVar a -> IsForced
flexForced FlexibleVar Int
fi IsForced -> IsForced -> Bool
forall a. Eq a => a -> a -> Bool
== IsForced
Forced ]
  (Pattern' DBPatVar
p, IntMap Modality
bound) <- IntMap Modality -> Term -> m (Pattern' DBPatVar, IntMap Modality)
forall (m :: * -> *).
PureTCM m =>
IntMap Modality -> Term -> m (Pattern' DBPatVar, IntMap Modality)
patternBindingForcedVars IntMap Modality
forcedVars Term
u

  -- To maintain the invariant that each variable in varTel is bound exactly once in the pattern
  -- substitution we need to turn the bound variables in `p` into dot patterns in the rest of the
  -- substitution.
  let dotSub :: PatternSubstitution
dotSub = (PatternSubstitution -> PatternSubstitution -> PatternSubstitution)
-> PatternSubstitution
-> [PatternSubstitution]
-> PatternSubstitution
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr PatternSubstitution -> PatternSubstitution -> PatternSubstitution
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
composeS PatternSubstitution
forall a. Substitution' a
idS [ Int -> Pattern' DBPatVar -> PatternSubstitution
forall a. EndoSubst a => Int -> a -> Substitution' a
inplaceS Int
i (Term -> Pattern' DBPatVar
forall a. Term -> Pattern' a
dotP (Int -> Elims -> Term
Var Int
i [])) | Int
i <- IntMap Modality -> [Int]
forall a. IntMap a -> [Int]
IntMap.keys IntMap Modality
bound ]

  -- We moved the binding site of some forced variables, so we need to update their modalities in
  -- the telescope. The new modality is the combination of the modality of the variable we are
  -- instantiating and the modality of the binding site in the pattern (returned by
  -- patternBindingForcedVars).
  let updModality :: Modality -> IntMap Modality -> Telescope -> Telescope
updModality Modality
md IntMap Modality
vars Telescope
tel
        | IntMap Modality -> Bool
forall a. IntMap a -> Bool
IntMap.null IntMap Modality
vars = Telescope
tel
        | Bool
otherwise        = [Dom' Term (String, Type)] -> Telescope
telFromList ([Dom' Term (String, Type)] -> Telescope)
-> [Dom' Term (String, Type)] -> Telescope
forall a b. (a -> b) -> a -> b
$ (Int -> Dom' Term (String, Type) -> Dom' Term (String, Type))
-> [Int]
-> [Dom' Term (String, Type)]
-> [Dom' Term (String, Type)]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Int -> Dom' Term (String, Type) -> Dom' Term (String, Type)
upd (Int -> [Int]
forall a. Integral a => a -> [a]
downFrom (Int -> [Int]) -> Int -> [Int]
forall a b. (a -> b) -> a -> b
$ Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) (Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel)
        where
          upd :: Int -> Dom' Term (String, Type) -> Dom' Term (String, Type)
upd Int
i Dom' Term (String, Type)
a | Just Modality
md' <- Int -> IntMap Modality -> Maybe Modality
forall a. Int -> IntMap a -> Maybe a
IntMap.lookup Int
i IntMap Modality
vars = Modality -> Dom' Term (String, Type) -> Dom' Term (String, Type)
forall a. LensModality a => Modality -> a -> a
setModality (Modality -> Modality -> Modality
composeModality Modality
md Modality
md') Dom' Term (String, Type)
a
                  | Bool
otherwise                        = Dom' Term (String, Type)
a
  UnifyState
s <- UnifyState -> m UnifyState
forall (m :: * -> *) a. Monad m => a -> m a
return (UnifyState -> m UnifyState) -> UnifyState -> m UnifyState
forall a b. (a -> b) -> a -> b
$ UnifyState
s { varTel :: Telescope
varTel = Modality -> IntMap Modality -> Telescope -> Telescope
updModality (FlexibleVar Int -> Modality
forall a. LensModality a => a -> Modality
getModality FlexibleVar Int
fi) IntMap Modality
bound (UnifyState -> Telescope
varTel UnifyState
s) }

  String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify.force" Int
45 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
    [ TCMT IO Doc
"forcedVars =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Int] -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (IntMap Modality -> [Int]
forall a. IntMap a -> [Int]
IntMap.keys IntMap Modality
forcedVars)
    , TCMT IO Doc
"u          =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
u
    , TCMT IO Doc
"p          =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Pattern' DBPatVar -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Pattern' DBPatVar
p
    , TCMT IO Doc
"bound      =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Int] -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (IntMap Modality -> [Int]
forall a. IntMap a -> [Int]
IntMap.keys IntMap Modality
bound)
    , TCMT IO Doc
"dotSub     =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> PatternSubstitution -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty PatternSubstitution
dotSub ]

  -- Check that the type of the variable is equal to the type of the equation
  -- (not just a subtype), otherwise we cannot instantiate (see Issue 2407).
  let dom' :: Dom' Term Type
dom'@Dom{ unDom :: forall t e. Dom' t e -> e
unDom = Type
a' } = Int -> UnifyState -> Dom' Term Type
getVarType (Int
mInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
i) UnifyState
s
  Either Blocker Bool
equalTypes <- Telescope -> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m (Either Blocker Bool) -> m (Either Blocker Bool))
-> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ BlockT m Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (BlockT m Bool -> m (Either Blocker Bool))
-> BlockT m Bool -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ do
    String -> Int -> TCMT IO Doc -> BlockT m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
45 (TCMT IO Doc -> BlockT m ()) -> TCMT IO Doc -> BlockT m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Equation type: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a
    String -> Int -> TCMT IO Doc -> BlockT m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
45 (TCMT IO Doc -> BlockT m ()) -> TCMT IO Doc -> BlockT m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Variable type: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a'
    Type -> Type -> BlockT m Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
Type -> Type -> m Bool
pureEqualType Type
a Type
a'

  -- The conditions on the relevances are as follows (see #2640):
  -- - If the type of the equation is relevant, then the solution must be
  --   usable in a relevant position.
  -- - If the type of the equation is (shape-)irrelevant, then the solution
  --   must be usable in a μ-relevant position where μ is the relevance
  --   of the variable being solved.
  --
  -- Jesper, Andreas, 2018-10-17: the quantity of the equation is morally
  -- always @Quantity0@, since the indices of the data type are runtime erased.
  -- Thus, we need not change the quantity of the solution.
  Modality
envmod <- Lens' Modality TCEnv -> m Modality
forall (m :: * -> *) a. MonadTCEnv m => Lens' a TCEnv -> m a
viewTC Lens' Modality TCEnv
eModality
  let eqrel :: Relevance
eqrel  = Dom' Term Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom' Term Type
dom
      eqmod :: Modality
eqmod  = Dom' Term Type -> Modality
forall a. LensModality a => a -> Modality
getModality Dom' Term Type
dom
      varmod :: Modality
varmod = Dom' Term Type -> Modality
forall a. LensModality a => a -> Modality
getModality Dom' Term Type
dom'
      mod :: Modality
mod    = Bool -> (Modality -> Modality) -> Modality -> Modality
forall a. Bool -> (a -> a) -> a -> a
applyUnless (Relevance
NonStrict Relevance -> Relevance -> Bool
`moreRelevant` Relevance
eqrel) (Relevance -> Modality -> Modality
forall a. LensRelevance a => Relevance -> a -> a
setRelevance Relevance
eqrel)
             (Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Bool -> (Modality -> Modality) -> Modality -> Modality
forall a. Bool -> (a -> a) -> a -> a
applyUnless (Modality -> Bool
forall a. LensQuantity a => a -> Bool
usableQuantity Modality
envmod) (Quantity -> Modality -> Modality
forall a. LensQuantity a => Quantity -> a -> a
setQuantity Quantity
zeroQuantity)
             (Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Modality
varmod
  String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
65 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> String -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ String
"Equation modality: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Modality -> String
forall a. Show a => a -> String
show (Dom' Term Type -> Modality
forall a. LensModality a => a -> Modality
getModality Dom' Term Type
dom)
  String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
65 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> String -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ String
"Variable modality: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Modality -> String
forall a. Show a => a -> String
show Modality
varmod
  String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
65 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> String -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ String
"Solution must be usable in a " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Modality -> String
forall a. Show a => a -> String
show Modality
mod String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
" position."
  -- Andreas, 2018-10-18
  -- Currently, the modality check has problems with meta-variables created in the type signature,
  -- and thus, in quantity 0, that get into terms using the unifier, and there are checked to be
  -- non-erased, i.e., have quantity ω.
  -- Ulf, 2019-12-13. We still do it though.
  -- Andrea, 2020-10-15: It looks at meta instantiations now.
  Either Blocker Bool
eusable <- Telescope -> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m (Either Blocker Bool) -> m (Either Blocker Bool))
-> m (Either Blocker Bool) -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ ExceptT Blocker m Bool -> m (Either Blocker Bool)
forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT (ExceptT Blocker m Bool -> m (Either Blocker Bool))
-> ExceptT Blocker m Bool -> m (Either Blocker Bool)
forall a b. (a -> b) -> a -> b
$ Modality -> Term -> ExceptT Blocker m Bool
forall a (m :: * -> *).
(UsableModality a, ReadTCState m, HasConstInfo m, MonadTCEnv m,
 MonadAddContext m, MonadDebug m, MonadReduce m,
 MonadError Blocker m) =>
Modality -> a -> m Bool
usableMod Modality
mod Term
u
  m (Either Blocker Bool)
-> (Blocker -> m (UnificationResult' UnifyState))
-> (Bool -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a b c.
Monad m =>
m (Either a b) -> (a -> m c) -> (b -> m c) -> m c
caseEitherM (Either Blocker Bool -> m (Either Blocker Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return Either Blocker Bool
eusable) (UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> (Blocker -> UnificationResult' UnifyState)
-> Blocker
-> m (UnificationResult' UnifyState)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked) ((Bool -> m (UnificationResult' UnifyState))
 -> m (UnificationResult' UnifyState))
-> (Bool -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ \ Bool
usable -> do

  String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
45 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Modality ok: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Bool -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Bool
usable
  Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless Bool
usable (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ String -> Int -> String -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> String -> m ()
reportSLn String
"tc.lhs.unify" Int
65 (String -> m ()) -> String -> m ()
forall a b. (a -> b) -> a -> b
$ String
"Rejected solution: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Term -> String
forall a. Show a => a -> String
show Term
u

  -- We need a Flat equality to solve a Flat variable.
  -- This also ought to take care of the need for a usableCohesion check.
  if Bool -> Bool
not (Modality -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion Modality
eqmod Cohesion -> Cohesion -> Bool
`moreCohesion` Modality -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion Modality
varmod) then UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [] else do

  case Either Blocker Bool
equalTypes of
    Left Blocker
block  -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
block
    Right Bool
False -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []
    Right Bool
True | Bool
usable ->
      case Int
-> Pattern' DBPatVar
-> UnifyState
-> Maybe (UnifyState, PatternSubstitution)
solveVar (Int
m Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i) Pattern' DBPatVar
p UnifyState
s of
        Maybe (UnifyState, PatternSubstitution)
Nothing | RetryNormalised
retry RetryNormalised -> RetryNormalised -> Bool
forall a. Eq a => a -> a -> Bool
== RetryNormalised
RetryNormalised -> do
          Term
u <- Term -> m Term
forall a (m :: * -> *). (Normalise a, MonadReduce m) => a -> m a
normalise Term
u
          UnifyState
s <- (Telescope -> m Telescope) -> UnifyState -> m UnifyState
Lens' Telescope UnifyState
lensVarTel Telescope -> m Telescope
forall a (m :: * -> *). (Normalise a, MonadReduce m) => a -> m a
normalise UnifyState
s
          RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
RetryNormalised
-> UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
solutionStep RetryNormalised
DontRetryNormalised UnifyState
s UnifyStep
step{ solutionTerm :: Term
solutionTerm = Term
u }
        Maybe (UnifyState, PatternSubstitution)
Nothing ->
          UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Int -> Term -> UnificationFailure
UnifyRecursiveEq (UnifyState -> Telescope
varTel UnifyState
s) Type
a Int
i Term
u]
        Just (UnifyState
s', PatternSubstitution
sub) -> do
          let rho :: PatternSubstitution
rho = PatternSubstitution
sub PatternSubstitution -> PatternSubstitution -> PatternSubstitution
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` PatternSubstitution
dotSub
          PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifySubst PatternSubstitution
rho
          let (UnifyState
s'', PatternSubstitution
sigma) = Int -> Term -> UnifyState -> (UnifyState, PatternSubstitution)
solveEq Int
k (PatternSubstitution -> Term -> Term
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho Term
u) UnifyState
s'
          PatternSubstitution -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
PatternSubstitution -> m ()
tellUnifyProof PatternSubstitution
sigma
          UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s''
          -- Andreas, 2019-02-23, issue #3578: do not eagerly reduce
          -- Unifies <$> liftTCM (reduce s'')
    Right Bool
True -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [Telescope -> Type -> Int -> Term -> Modality -> UnificationFailure
UnifyUnusableModality (UnifyState -> Telescope
varTel UnifyState
s) Type
a Int
i Term
u Modality
mod]
solutionStep RetryNormalised
_ UnifyState
_ UnifyStep
_ = m (UnificationResult' UnifyState)
forall a. HasCallStack => a
__IMPOSSIBLE__

unify
  :: (PureTCM m, MonadWriter UnifyOutput m)
  => UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
unify :: forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
unify UnifyState
s UnifyStrategy
strategy = if UnifyState -> Bool
isUnifyStateSolved UnifyState
s
                   then UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnificationResult' UnifyState
forall a. a -> UnificationResult' a
Unifies UnifyState
s
                   else ListT m UnifyStep -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
ListT m UnifyStep -> m (UnificationResult' UnifyState)
tryUnifyStepsAndContinue (UnifyState -> ListT m UnifyStep
UnifyStrategy
strategy UnifyState
s)
  where
    tryUnifyStepsAndContinue
      :: (PureTCM m, MonadWriter UnifyOutput m)
      => ListT m UnifyStep -> m (UnificationResult' UnifyState)
    tryUnifyStepsAndContinue :: forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
ListT m UnifyStep -> m (UnificationResult' UnifyState)
tryUnifyStepsAndContinue ListT m UnifyStep
steps = do
      UnificationResult' UnifyState
x <- (UnifyStep
 -> m (UnificationResult' UnifyState)
 -> m (UnificationResult' UnifyState))
-> m (UnificationResult' UnifyState)
-> ListT m UnifyStep
-> m (UnificationResult' UnifyState)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b -> m b) -> m b -> ListT m a -> m b
foldListT UnifyStep
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyStep
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
tryUnifyStep m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => m (UnificationResult' a)
failure ListT m UnifyStep
steps
      case UnificationResult' UnifyState
x of
        Unifies UnifyState
s'     -> UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyState -> UnifyStrategy -> m (UnificationResult' UnifyState)
unify UnifyState
s' UnifyStrategy
strategy
        NoUnify NegativeUnification
err    -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ NegativeUnification -> UnificationResult' UnifyState
forall a. NegativeUnification -> UnificationResult' a
NoUnify NegativeUnification
err
        UnifyBlocked Blocker
b -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
b
        UnifyStuck [UnificationFailure]
err -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck [UnificationFailure]
err

    tryUnifyStep :: (PureTCM m, MonadWriter UnifyOutput m)
                 => UnifyStep
                 -> m (UnificationResult' UnifyState)
                 -> m (UnificationResult' UnifyState)
    tryUnifyStep :: forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyStep
-> m (UnificationResult' UnifyState)
-> m (UnificationResult' UnifyState)
tryUnifyStep UnifyStep
step m (UnificationResult' UnifyState)
fallback = do
      Telescope -> m () -> m ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (UnifyState -> Telescope
varTel UnifyState
s) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$
        String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
20 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"trying unifyStep" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> UnifyStep -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM UnifyStep
step
      UnificationResult' UnifyState
x <- UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
forall (m :: * -> *).
(PureTCM m, MonadWriter UnifyOutput m) =>
UnifyState -> UnifyStep -> m (UnificationResult' UnifyState)
unifyStep UnifyState
s UnifyStep
step
      case UnificationResult' UnifyState
x of
        Unifies UnifyState
s'   -> do
          String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
20 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"unifyStep successful."
          String -> Int -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
String -> Int -> TCMT IO Doc -> m ()
reportSDoc String
"tc.lhs.unify" Int
20 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"new unifyState:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> UnifyState -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM UnifyState
s'
          UnifyLogEntry -> m ()
forall (m :: * -> *).
MonadWriter UnifyOutput m =>
UnifyLogEntry -> m ()
writeUnifyLog (UnifyLogEntry -> m ()) -> UnifyLogEntry -> m ()
forall a b. (a -> b) -> a -> b
$ UnifyState -> UnifyStep -> UnifyLogEntry
UnificationStep UnifyState
s UnifyStep
step
          UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
x
        NoUnify{}       -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
x
        UnifyBlocked Blocker
b1 -> do
          UnificationResult' UnifyState
y <- m (UnificationResult' UnifyState)
fallback
          case UnificationResult' UnifyState
y of
            UnifyStuck [UnificationFailure]
_    -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked Blocker
b1
            UnifyBlocked Blocker
b2 -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ Blocker -> UnificationResult' UnifyState
forall a. Blocker -> UnificationResult' a
UnifyBlocked (Blocker -> UnificationResult' UnifyState)
-> Blocker -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ Blocker -> Blocker -> Blocker
unblockOnEither Blocker
b1 Blocker
b2
            UnificationResult' UnifyState
_               -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
y
        UnifyStuck [UnificationFailure]
err1 -> do
          UnificationResult' UnifyState
y <- m (UnificationResult' UnifyState)
fallback
          case UnificationResult' UnifyState
y of
            UnifyStuck [UnificationFailure]
err2 -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' UnifyState
 -> m (UnificationResult' UnifyState))
-> UnificationResult' UnifyState
-> m (UnificationResult' UnifyState)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' UnifyState
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck ([UnificationFailure] -> UnificationResult' UnifyState)
-> [UnificationFailure] -> UnificationResult' UnifyState
forall a b. (a -> b) -> a -> b
$ [UnificationFailure]
err1 [UnificationFailure]
-> [UnificationFailure] -> [UnificationFailure]
forall a. [a] -> [a] -> [a]
++ [UnificationFailure]
err2
            UnificationResult' UnifyState
_               -> UnificationResult' UnifyState -> m (UnificationResult' UnifyState)
forall (m :: * -> *) a. Monad m => a -> m a
return UnificationResult' UnifyState
y

    failure :: Monad m => m (UnificationResult' a)
    failure :: forall (m :: * -> *) a. Monad m => m (UnificationResult' a)
failure = UnificationResult' a -> m (UnificationResult' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnificationResult' a -> m (UnificationResult' a))
-> UnificationResult' a -> m (UnificationResult' a)
forall a b. (a -> b) -> a -> b
$ [UnificationFailure] -> UnificationResult' a
forall a. [UnificationFailure] -> UnificationResult' a
UnifyStuck []

-- | Turn a term into a pattern while binding as many of the given forced variables as possible (in
--   non-forced positions).
patternBindingForcedVars :: PureTCM m => IntMap Modality -> Term -> m (DeBruijnPattern, IntMap Modality)
patternBindingForcedVars :: forall (m :: * -> *).
PureTCM m =>
IntMap Modality -> Term -> m (Pattern' DBPatVar, IntMap Modality)
patternBindingForcedVars IntMap Modality
forced Term
v = do
  let v' :: Term
v' = Term -> Term
forall a. PrecomputeFreeVars a => a -> a
precomputeFreeVars_ Term
v
  WriterT (IntMap Modality) m (Pattern' DBPatVar)
-> m (Pattern' DBPatVar, IntMap Modality)
forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
runWriterT (StateT
  (IntMap Modality) (WriterT (IntMap Modality) m) (Pattern' DBPatVar)
-> IntMap Modality
-> WriterT (IntMap Modality) m (Pattern' DBPatVar)
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
evalStateT (Modality
-> Term
-> StateT
     (IntMap Modality) (WriterT (IntMap Modality) m) (Pattern' DBPatVar)
forall {t :: (* -> *) -> * -> *} {t :: (* -> *) -> * -> *}
       {m :: * -> *} {a}.
(MonadWriter (IntMap Modality) (t (t m)), HasConstInfo (t (t m)),
 DeBruijn a, MonadTrans t, MonadTrans t, Monad (t m), MonadReduce m,
 MonadState (IntMap Modality) (t (t m))) =>
Modality -> Term -> t (t m) (Pattern' a)
go Modality
defaultModality Term
v') IntMap Modality
forced)
  where
    noForced :: a -> m Bool
noForced a
v = (IntMap a -> Bool) -> m Bool
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets ((IntMap a -> Bool) -> m Bool) -> (IntMap a -> Bool) -> m Bool
forall a b. (a -> b) -> a -> b
$ IntSet -> IntSet -> Bool
IntSet.disjoint (a -> IntSet
forall a. PrecomputeFreeVars a => a -> IntSet
precomputedFreeVars a
v) (IntSet -> Bool) -> (IntMap a -> IntSet) -> IntMap a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> IntSet
forall a. IntMap a -> IntSet
IntMap.keysSet

    bind :: a -> Int -> m (Pattern' a)
bind a
md Int
i = do
      (IntMap a -> Maybe a) -> m (Maybe a)
forall s (m :: * -> *) a. MonadState s m => (s -> a) -> m a
gets (Int -> IntMap a -> Maybe a
forall a. Int -> IntMap a -> Maybe a
IntMap.lookup Int
i) m (Maybe a) -> (Maybe a -> m (Pattern' a)) -> m (Pattern' a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
        Just a
md' | a -> PartialOrdering -> a -> Bool
forall a. PartialOrd a => a -> PartialOrdering -> a -> Bool
related a
md PartialOrdering
POLE a
md' -> do
          -- The new binding site must be more relevant (more relevant = smaller).
          -- "The forcing analysis guarantees that there exists such a position."
          -- Really? Andreas, 2021-08-18, issue #5506
          IntMap a -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell   (IntMap a -> m ()) -> IntMap a -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
IntMap.singleton Int
i a
md
          (IntMap a -> IntMap a) -> m ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify ((IntMap a -> IntMap a) -> m ()) -> (IntMap a -> IntMap a) -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
IntMap.delete Int
i
          Pattern' a -> m (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> m (Pattern' a)) -> Pattern' a -> m (Pattern' a)
forall a b. (a -> b) -> a -> b
$ a -> Pattern' a
forall a. a -> Pattern' a
varP (Int -> a
forall a. DeBruijn a => Int -> a
deBruijnVar Int
i)
        Maybe a
_ -> Pattern' a -> m (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> m (Pattern' a)) -> Pattern' a -> m (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP (Int -> Elims -> Term
Var Int
i [])

    go :: Modality -> Term -> t (t m) (Pattern' a)
go Modality
md Term
v = t (t m) Bool
-> t (t m) (Pattern' a)
-> t (t m) (Pattern' a)
-> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (Term -> t (t m) Bool
forall {a} {m :: * -> *} {a}.
(MonadState (IntMap a) m, PrecomputeFreeVars a) =>
a -> m Bool
noForced Term
v) (Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v) (t (t m) (Pattern' a) -> t (t m) (Pattern' a))
-> t (t m) (Pattern' a) -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ do
      Term
v' <- t m Term -> t (t m) Term
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (t m Term -> t (t m) Term) -> t m Term -> t (t m) Term
forall a b. (a -> b) -> a -> b
$ m Term -> t m Term
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m Term -> t m Term) -> m Term -> t m Term
forall a b. (a -> b) -> a -> b
$ Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Term
v
      case Term
v' of
        Var Int
i [] -> Modality -> Int -> t (t m) (Pattern' a)
forall {a} {m :: * -> *} {a}.
(MonadState (IntMap a) m, PartialOrd a, MonadWriter (IntMap a) m,
 DeBruijn a) =>
a -> Int -> m (Pattern' a)
bind Modality
md Int
i  -- we know i is forced
        Con ConHead
c ConInfo
ci Elims
es
          | Just [Arg Term]
vs <- Elims -> Maybe [Arg Term]
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es -> do
            [IsForced]
fs <- Definition -> [IsForced]
defForced (Definition -> [IsForced])
-> t (t m) Definition -> t (t m) [IsForced]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName -> t (t m) Definition
forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo (ConHead -> QName
conName ConHead
c)
            let goArg :: IsForced -> Arg Term -> t (t m) (NamedArg (Pattern' a))
goArg IsForced
Forced    Arg Term
v = NamedArg (Pattern' a) -> t (t m) (NamedArg (Pattern' a))
forall (m :: * -> *) a. Monad m => a -> m a
return (NamedArg (Pattern' a) -> t (t m) (NamedArg (Pattern' a)))
-> NamedArg (Pattern' a) -> t (t m) (NamedArg (Pattern' a))
forall a b. (a -> b) -> a -> b
$ (Term -> Named NamedName (Pattern' a))
-> Arg Term -> NamedArg (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Pattern' a -> Named NamedName (Pattern' a)
forall a name. a -> Named name a
unnamed (Pattern' a -> Named NamedName (Pattern' a))
-> (Term -> Pattern' a) -> Term -> Named NamedName (Pattern' a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Pattern' a
forall a. Term -> Pattern' a
dotP) Arg Term
v
                goArg IsForced
NotForced Arg Term
v = (Pattern' a -> Named NamedName (Pattern' a))
-> Arg (Pattern' a) -> NamedArg (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Pattern' a -> Named NamedName (Pattern' a)
forall a name. a -> Named name a
unnamed (Arg (Pattern' a) -> NamedArg (Pattern' a))
-> t (t m) (Arg (Pattern' a)) -> t (t m) (NamedArg (Pattern' a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Term -> t (t m) (Pattern' a))
-> Arg Term -> t (t m) (Arg (Pattern' a))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Modality -> Term -> t (t m) (Pattern' a)
go (Modality -> Term -> t (t m) (Pattern' a))
-> Modality -> Term -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Modality -> Modality -> Modality
composeModality Modality
md (Modality -> Modality) -> Modality -> Modality
forall a b. (a -> b) -> a -> b
$ Arg Term -> Modality
forall a. LensModality a => a -> Modality
getModality Arg Term
v) Arg Term
v
            ([NamedArg (Pattern' a)]
ps, IntMap Modality
bound) <- t (t m) [NamedArg (Pattern' a)]
-> t (t m) ([NamedArg (Pattern' a)], IntMap Modality)
forall w (m :: * -> *) a. MonadWriter w m => m a -> m (a, w)
listen (t (t m) [NamedArg (Pattern' a)]
 -> t (t m) ([NamedArg (Pattern' a)], IntMap Modality))
-> t (t m) [NamedArg (Pattern' a)]
-> t (t m) ([NamedArg (Pattern' a)], IntMap Modality)
forall a b. (a -> b) -> a -> b
$ (IsForced -> Arg Term -> t (t m) (NamedArg (Pattern' a)))
-> [IsForced] -> [Arg Term] -> t (t m) [NamedArg (Pattern' a)]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM IsForced -> Arg Term -> t (t m) (NamedArg (Pattern' a))
goArg ([IsForced]
fs [IsForced] -> [IsForced] -> [IsForced]
forall a. [a] -> [a] -> [a]
++ IsForced -> [IsForced]
forall a. a -> [a]
repeat IsForced
NotForced) [Arg Term]
vs
            if IntMap Modality -> Bool
forall a. IntMap a -> Bool
IntMap.null IntMap Modality
bound
              then Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v  -- bound nothing
              else do
                let cpi :: ConPatternInfo
cpi = (ConInfo -> ConPatternInfo
toConPatternInfo ConInfo
ci) { conPLazy :: Bool
conPLazy   = Bool
True } -- Not setting conPType. Is this a problem?
                Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ ConHead -> ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
cpi ([NamedArg (Pattern' a)] -> Pattern' a)
-> [NamedArg (Pattern' a)] -> Pattern' a
forall a b. (a -> b) -> a -> b
$ (NamedArg (Pattern' a) -> NamedArg (Pattern' a))
-> [NamedArg (Pattern' a)] -> [NamedArg (Pattern' a)]
forall a b. (a -> b) -> [a] -> [b]
map (Origin -> NamedArg (Pattern' a) -> NamedArg (Pattern' a)
forall a. LensOrigin a => Origin -> a -> a
setOrigin Origin
Inserted) [NamedArg (Pattern' a)]
ps
          | Bool
otherwise -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v   -- Higher constructor (es has IApply)

        -- Non-pattern positions
        Var Int
_ (Elim
_:Elims
_) -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        Lam{}       -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        Pi{}        -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        Def{}       -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        MetaV{}     -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        Sort{}      -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        Level{}     -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        DontCare{}  -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        Dummy{}     -> Pattern' a -> t (t m) (Pattern' a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Pattern' a -> t (t m) (Pattern' a))
-> Pattern' a -> t (t m) (Pattern' a)
forall a b. (a -> b) -> a -> b
$ Term -> Pattern' a
forall a. Term -> Pattern' a
dotP Term
v
        Lit{}       -> t (t m) (Pattern' a)
forall a. HasCallStack => a
__IMPOSSIBLE__