Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- class Apply t where
- applys :: Apply t => t -> [Term] -> t
- apply1 :: Apply t => t -> Term -> t
- class Abstract t where
- class DeBruijn (SubstArg a) => Subst a where
- type SubstArg a
- applySubst :: Substitution' (SubstArg a) -> a -> a
- type SubstWith t a = (Subst a, SubstArg a ~ t)
- type EndoSubst a = SubstWith a a
- type TermSubst a = SubstWith Term a
- raise :: Subst a => Nat -> a -> a
- raiseFrom :: Subst a => Nat -> Nat -> a -> a
- subst :: Subst a => Int -> SubstArg a -> a -> a
- strengthen :: Subst a => Impossible -> a -> a
- substUnder :: Subst a => Nat -> SubstArg a -> a -> a
- isNoAbs :: (Free a, Subst a) => Abs a -> Maybe a
- newtype NoSubst t a = NoSubst {
- unNoSubst :: a
- idS :: Substitution' a
- wkS :: Int -> Substitution' a -> Substitution' a
- raiseS :: Int -> Substitution' a
- consS :: DeBruijn a => a -> Substitution' a -> Substitution' a
- singletonS :: DeBruijn a => Int -> a -> Substitution' a
- inplaceS :: EndoSubst a => Int -> a -> Substitution' a
- liftS :: Int -> Substitution' a -> Substitution' a
- dropS :: Int -> Substitution' a -> Substitution' a
- composeS :: EndoSubst a => Substitution' a -> Substitution' a -> Substitution' a
- splitS :: Int -> Substitution' a -> (Substitution' a, Substitution' a)
- (++#) :: DeBruijn a => [a] -> Substitution' a -> Substitution' a
- prependS :: DeBruijn a => Impossible -> [Maybe a] -> Substitution' a -> Substitution' a
- parallelS :: DeBruijn a => [a] -> Substitution' a
- strengthenS :: Impossible -> Int -> Substitution' a
- strengthenS' :: Impossible -> Int -> Substitution' a -> Substitution' a
- lookupS :: EndoSubst a => Substitution' a -> Nat -> a
- listS :: EndoSubst a => [(Int, a)] -> Substitution' a
- raiseFromS :: Nat -> Nat -> Substitution' a
- absApp :: Subst a => Abs a -> SubstArg a -> a
- lazyAbsApp :: Subst a => Abs a -> SubstArg a -> a
- noabsApp :: Subst a => Impossible -> Abs a -> a
- absBody :: Subst a => Abs a -> a
- mkAbs :: (Subst a, Free a) => ArgName -> a -> Abs a
- reAbs :: (Subst a, Free a) => Abs a -> Abs a
Application
Apply something to a bunch of arguments. Preserves blocking tags (application can never resolve blocking).
Instances
Abstraction
class Abstract t where Source #
(abstract args v)
.apply
args --> v[args]
Instances
Substitution and shifting/weakening/strengthening
class DeBruijn (SubstArg a) => Subst a where Source #
Apply a substitution.
Nothing
applySubst :: Substitution' (SubstArg a) -> a -> a Source #
Instances
type SubstWith t a = (Subst a, SubstArg a ~ t) Source #
Simple constraint alias for a Subst
instance a
with arg type t
.
subst :: Subst a => Int -> SubstArg a -> a -> a Source #
Replace de Bruijn index i by a Term
in something.
strengthen :: Subst a => Impossible -> a -> a Source #
substUnder :: Subst a => Nat -> SubstArg a -> a -> a Source #
Replace what is now de Bruijn index 0, but go under n binders.
substUnder n u == subst n (raise n u)
.
isNoAbs :: (Free a, Subst a) => Abs a -> Maybe a Source #
Checks whether the variable bound by the abstraction is actually
used, and, if not, returns the term within, strengthen
ed to live in
the context outside the abstraction.
See also isBinderUsed
.
Identity instances
Wrapper for types that do not contain variables (so applying a substitution is the identity). Useful if you have a structure of types that support substitution mixed with types that don't and need to apply a substitution to the full structure.
Instances
Functor (NoSubst t) Source # | |
DeBruijn t => Subst (NoSubst t a) Source # | |
Defined in Agda.TypeChecking.Substitute.Class applySubst :: Substitution' (SubstArg (NoSubst t a)) -> NoSubst t a -> NoSubst t a Source # | |
Generic (NoSubst t a) Source # | |
NFData a => NFData (NoSubst t a) Source # | |
Defined in Agda.TypeChecking.Substitute.Class | |
type SubstArg (NoSubst t a) Source # | |
Defined in Agda.TypeChecking.Substitute.Class | |
type Rep (NoSubst t a) Source # | |
Defined in Agda.TypeChecking.Substitute.Class |
Explicit substitutions
idS :: Substitution' a Source #
wkS :: Int -> Substitution' a -> Substitution' a Source #
raiseS :: Int -> Substitution' a Source #
consS :: DeBruijn a => a -> Substitution' a -> Substitution' a Source #
singletonS :: DeBruijn a => Int -> a -> Substitution' a Source #
To replace index n
by term u
, do applySubst (singletonS n u)
.
Γ, Δ ⊢ u : A
---------------------------------
Γ, Δ ⊢ singletonS |Δ| u : Γ, A, Δ
inplaceS :: EndoSubst a => Int -> a -> Substitution' a Source #
Single substitution without disturbing any deBruijn indices.
Γ, A, Δ ⊢ u : A
---------------------------------
Γ, A, Δ ⊢ inplace |Δ| u : Γ, A, Δ
liftS :: Int -> Substitution' a -> Substitution' a Source #
Lift a substitution under k binders.
dropS :: Int -> Substitution' a -> Substitution' a Source #
Γ ⊢ ρ : Δ, Ψ ------------------- Γ ⊢ dropS |Ψ| ρ : Δ
composeS :: EndoSubst a => Substitution' a -> Substitution' a -> Substitution' a Source #
applySubst (ρ composeS
σ) v == applySubst ρ (applySubst σ v)
splitS :: Int -> Substitution' a -> (Substitution' a, Substitution' a) Source #
(++#) :: DeBruijn a => [a] -> Substitution' a -> Substitution' a infixr 4 Source #
prependS :: DeBruijn a => Impossible -> [Maybe a] -> Substitution' a -> Substitution' a Source #
Γ ⊢ ρ : Δ Γ ⊢ reverse vs : Θ ----------------------------- (treating Nothing as having any type) Γ ⊢ prependS vs ρ : Δ, Θ
parallelS :: DeBruijn a => [a] -> Substitution' a Source #
Γ ⊢ reverse vs : Δ ----------------------------- Γ ⊢ parallelS vs ρ : Γ, Δ
Note the Γ
in Γ, Δ
.
strengthenS :: Impossible -> Int -> Substitution' a Source #
Γ ⊢ (strengthenS ⊥ |Δ|) : Γ,Δ
strengthenS' :: Impossible -> Int -> Substitution' a -> Substitution' a Source #
A "smart" variant of Strengthen
. If strengthenS
is applied
to a substitution with an outermost Strengthen
constructor, then
the "error message" of that constructor is discarded in favour of
the Impossible
argument of this function.
listS :: EndoSubst a => [(Int, a)] -> Substitution' a Source #
lookupS (listS [(x0,t0)..(xn,tn)]) xi = ti, assuming x0 < .. < xn.
raiseFromS :: Nat -> Nat -> Substitution' a Source #
Γ, Ξ, Δ ⊢ raiseFromS |Δ| |Ξ| : Γ, Δ
Functions on abstractions
absApp :: Subst a => Abs a -> SubstArg a -> a Source #
Instantiate an abstraction. Strict in the term.
lazyAbsApp :: Subst a => Abs a -> SubstArg a -> a Source #
Instantiate an abstraction. Lazy in the term, which allow it to be
IMPOSSIBLE in the case where the variable shouldn't be used but we
cannot use noabsApp
. Used in Apply.