HaskellForMaths-0.4.9: Combinatorics, group theory, commutative algebra, non-commutative algebra
Math.Algebras.AffinePlane
Description
A module defining the affine plane and its symmetries
data XY Source #
Constructors
Defined in Math.Algebras.AffinePlane
Methods
(==) :: XY -> XY -> Bool #
(/=) :: XY -> XY -> Bool #
compare :: XY -> XY -> Ordering #
(<) :: XY -> XY -> Bool #
(<=) :: XY -> XY -> Bool #
(>) :: XY -> XY -> Bool #
(>=) :: XY -> XY -> Bool #
max :: XY -> XY -> XY #
min :: XY -> XY -> XY #
showsPrec :: Int -> XY -> ShowS #
show :: XY -> String #
showList :: [XY] -> ShowS #
x :: GlexPoly Q XY Source #
y :: GlexPoly Q XY Source #
data ABCD Source #
(==) :: ABCD -> ABCD -> Bool #
(/=) :: ABCD -> ABCD -> Bool #
compare :: ABCD -> ABCD -> Ordering #
(<) :: ABCD -> ABCD -> Bool #
(<=) :: ABCD -> ABCD -> Bool #
(>) :: ABCD -> ABCD -> Bool #
(>=) :: ABCD -> ABCD -> Bool #
max :: ABCD -> ABCD -> ABCD #
min :: ABCD -> ABCD -> ABCD #
showsPrec :: Int -> ABCD -> ShowS #
show :: ABCD -> String #
showList :: [ABCD] -> ShowS #
antipode :: Vect Q (SL2 ABCD) -> Vect Q (SL2 ABCD) Source #
counit :: Vect Q (SL2 ABCD) -> Q Source #
comult :: Vect Q (SL2 ABCD) -> Vect Q (Tensor (SL2 ABCD) (SL2 ABCD)) Source #
unit :: Q -> Vect Q (SL2 ABCD) Source #
mult :: Vect Q (Tensor (SL2 ABCD) (SL2 ABCD)) -> Vect Q (SL2 ABCD) Source #
a :: Monomial m => Vect Q (m ABCD) Source #
b :: Monomial m => Vect Q (m ABCD) Source #
c :: Monomial m => Vect Q (m ABCD) Source #
d :: Monomial m => Vect Q (m ABCD) Source #
newtype SL2 v Source #
var :: v -> Vect Q (SL2 v) Source #
powers :: SL2 v -> [(v, Int)] Source #
(==) :: SL2 v -> SL2 v -> Bool #
(/=) :: SL2 v -> SL2 v -> Bool #
compare :: SL2 v -> SL2 v -> Ordering #
(<) :: SL2 v -> SL2 v -> Bool #
(<=) :: SL2 v -> SL2 v -> Bool #
(>) :: SL2 v -> SL2 v -> Bool #
(>=) :: SL2 v -> SL2 v -> Bool #
max :: SL2 v -> SL2 v -> SL2 v #
min :: SL2 v -> SL2 v -> SL2 v #
showsPrec :: Int -> SL2 v -> ShowS #
show :: SL2 v -> String #
showList :: [SL2 v] -> ShowS #
sl2Var :: Num k => v -> Vect k (SL2 v) Source #