{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, ScopedTypeVariables, EmptyDataDecls, FlexibleInstances #-}
module Math.Algebra.Field.Extension where
import Prelude hiding ( (<*>) )
import Data.Ratio
import Data.List as L (elemIndex)
import Math.Common.IntegerAsType
import Math.Core.Utils
import Math.Algebra.Field.Base
newtype UPoly a = UP [a] deriving (Eq,Ord)
x = UP [0,1] :: UPoly Integer
instance (Eq a, Show a, Num a) => Show (UPoly a) where
show (UP as) = showUP "x" as
showUP _ [] = "0"
showUP v as = let powers = filter ( (/=0) . fst ) $ zip as [0..]
c:cs = concatMap showTerm powers
in if c == '+' then cs else c:cs
where showTerm (a,i) = showCoeff a ++ showPower a i
showCoeff a = case show a of
"1" -> "+"
"-1" -> "-"
'-':cs -> '-':cs
cs -> '+':cs
showPower a i | i == 0 = case show a of
"1" -> "1"
"-1" -> "1"
otherwise -> ""
| i == 1 = v
| i > 1 = v ++ "^" ++ show i
instance (Eq a, Num a) => Num (UPoly a) where
UP as + UP bs = UP $ as <+> bs
negate (UP as) = UP $ map negate as
UP as * UP bs = UP $ as <*> bs
fromInteger 0 = UP []
fromInteger a = UP [fromInteger a]
abs _ = error "Prelude.Num.abs: inappropriate abstraction"
signum _ = error "Prelude.Num.signum: inappropriate abstraction"
toUPoly as = UP (reverse (dropWhile (== 0) (reverse as)))
as <+> [] = as
[] <+> bs = bs
(a:as) <+> (b:bs) = let c = a+b
cs = as <+> bs
in if c == 0 && null cs then [] else c:cs
[] <*> _ = []
_ <*> [] = []
(a:as) <*> bs = if null as then map (a*) bs else map (a*) bs <+> (0 : as <*> bs)
convert (UP as) = toUPoly $ map fromInteger as
deg (UP as) = length as
lt (UP as) = last as
monomial a i = UP $ replicate i 0 ++ [a]
quotRemUP :: (Eq k, Fractional k) => UPoly k -> UPoly k -> (UPoly k, UPoly k)
quotRemUP f g = qr 0 f where
qr q r = if deg r < deg_g
then (q,r)
else let s = monomial (lt r / lt_g) (deg r - deg_g)
in qr (q+s) (r-s*g)
deg_g = deg g
lt_g = lt g
modUP f g = snd $ quotRemUP f g
extendedEuclidUP f g = extendedEuclidUP' f g [] where
extendedEuclidUP' d 0 qs = let (u,v) = unwind 1 0 qs in (u,v,d)
extendedEuclidUP' f g qs = let (q,r) = quotRemUP f g in extendedEuclidUP' g r (q:qs)
unwind u v [] = (u,v)
unwind u v (q:qs) = unwind v (u-v*q) qs
class PolynomialAsType k poly where
pvalue :: (k,poly) -> UPoly k
data ExtensionField k poly = Ext (UPoly k) deriving (Eq,Ord)
instance (Eq k, Show k, Num k) => Show (ExtensionField k poly) where
show (Ext (UP as)) = showUP "a" as
instance (Eq k, Fractional k, PolynomialAsType k poly) => Num (ExtensionField k poly) where
Ext x + Ext y = Ext $ (x+y)
Ext x * Ext y = Ext $ (x*y) `modUP` pvalue (undefined :: (k,poly))
negate (Ext x) = Ext $ negate x
fromInteger x = Ext $ fromInteger x
abs _ = error "Prelude.Num.abs: inappropriate abstraction"
signum _ = error "Prelude.Num.signum: inappropriate abstraction"
instance (Eq k, Fractional k, PolynomialAsType k poly) => Fractional (ExtensionField k poly) where
recip 0 = error "ExtensionField.recip 0"
recip (Ext f) = let g = pvalue (undefined :: (k,poly))
(u,v,d@(UP [c])) = extendedEuclidUP f g
in Ext $ (c /> u) `modUP` g
fromRational q = fromInteger a / fromInteger b where a = numerator q; b = denominator q
c /> f@(UP as) | c == 1 = f
| c /= 0 = UP (map (c' *) as) where c' = recip c
instance (FiniteField k, PolynomialAsType k poly) => FiniteField (ExtensionField k poly) where
eltsFq _ = map Ext (polys (d-1) fp) where
fp = eltsFq (undefined :: k)
d = deg $ pvalue (undefined :: (k,poly))
basisFq _ = map embed $ take (d-1) $ iterate (*x) 1 where
d = deg $ pvalue (undefined :: (k,poly))
instance (FinSet fp, Eq fp, Num fp, PolynomialAsType fp poly) => FinSet (ExtensionField fp poly) where
elts = map Ext (polys (d-1) fp') where
fp' = elts
d = deg $ pvalue (undefined :: (fp,poly))
embed f = Ext (convert f)
polys d fp = map toUPoly $ polys' d where
polys' 0 = [[]]
polys' d = [x:xs | x <- fp, xs <- polys' (d-1)]
data ConwayF4
instance PolynomialAsType F2 ConwayF4 where pvalue _ = convert $ x^2+x+1
type F4 = ExtensionField F2 ConwayF4
f4 = map Ext (polys 2 f2) :: [F4]
a4 = embed x :: F4
data ConwayF8
instance PolynomialAsType F2 ConwayF8 where pvalue _ = convert $ x^3+x+1
type F8 = ExtensionField F2 ConwayF8
f8 = map Ext (polys 3 f2) :: [F8]
a8 = embed x :: F8
data ConwayF9
instance PolynomialAsType F3 ConwayF9 where pvalue _ = convert $ x^2+2*x+2
type F9 = ExtensionField F3 ConwayF9
f9 = map Ext (polys 2 f3) :: [F9]
a9 = embed x :: F9
data ConwayF16
instance PolynomialAsType F2 ConwayF16 where pvalue _ = convert $ x^4+x+1
type F16 = ExtensionField F2 ConwayF16
f16 = map Ext (polys 4 f2) :: [F16]
a16 = embed x :: F16
data ConwayF25
instance PolynomialAsType F5 ConwayF25 where pvalue _ = convert $ x^2+4*x+2
type F25 = ExtensionField F5 ConwayF25
f25 = map Ext (polys 2 f5) :: [F25]
a25 = embed x :: F25
data ConwayF27
instance PolynomialAsType F3 ConwayF27 where pvalue _ = convert $ x^3+2*x+1
type F27 = ExtensionField F3 ConwayF27
f27 = map Ext (polys 3 f3) :: [F27]
a27 = embed x :: F27
data ConwayF32
instance PolynomialAsType F2 ConwayF32 where pvalue _ = convert $ x^5+x^2+1
type F32 = ExtensionField F2 ConwayF32
f32 = map Ext (polys 5 f2) :: [F32]
a32 = embed x :: F32
frobeniusAut x = x ^ p where
p = char $ eltsFq x
degree fq = n where
q = length fq
p = char fq
Just n = L.elemIndex q $ iterate (*p) 1
data Sqrt a = Sqrt a
instance IntegerAsType n => PolynomialAsType Q (Sqrt n) where
pvalue _ = convert $ x^2 - fromInteger (value (undefined :: n))
type QSqrt2 = ExtensionField Q (Sqrt T2)
sqrt2 = embed x :: QSqrt2
type QSqrt3 = ExtensionField Q (Sqrt T3)
sqrt3 = embed x :: QSqrt3
type QSqrt5 = ExtensionField Q (Sqrt T5)
sqrt5 = embed x :: QSqrt5
type QSqrt7 = ExtensionField Q (Sqrt T7)
sqrt7 = embed x :: QSqrt7
type QSqrtMinus1 = ExtensionField Q (Sqrt TMinus1)
i = embed x :: QSqrtMinus1
type QSqrtMinus2 = ExtensionField Q (Sqrt (M TMinus1 T2))
sqrtminus2 = embed x :: QSqrtMinus2
type QSqrtMinus3 = ExtensionField Q (Sqrt (M TMinus1 T3))
sqrtminus3 = embed x :: QSqrtMinus3
type QSqrtMinus5 = ExtensionField Q (Sqrt (M TMinus1 T5))
sqrtminus5 = embed x :: QSqrtMinus5
conjugate :: ExtensionField Q (Sqrt d) -> ExtensionField Q (Sqrt d)
conjugate (Ext (UP [a,b])) = Ext (UP [a,-b])
conjugate x = x