{-# LANGUAGE TypeFamilies, EmptyDataDecls, MultiParamTypeClasses #-}
module Math.QuantumAlgebra.TensorCategory where
import Data.List as L
class MCategory c where
data Ob c :: *
data Ar c :: *
id_ :: Ob c -> Ar c
source, target :: Ar c -> Ob c
(>>>) :: Ar c -> Ar c -> Ar c
class (MCategory a, MCategory b) => MFunctor a b where
fob :: Ob a -> Ob b
far :: Ar a -> Ar b
class MCategory c => Monoidal c where
tunit :: Ob c
tob :: Ob c -> Ob c -> Ob c
tar :: Ar c -> Ar c -> Ar c
class Monoidal c => StrictMonoidal c where {}
class Monoidal c => WeakMonoidal c where
assoc :: Ob c -> Ob c -> Ob c -> Ar c
lunit :: Ob c -> Ar c
runit :: Ob c -> Ar c
class Monoidal c => Braided c where
twist :: Ob c -> Ob c -> Ar c
class Braided c => Symmetric c where {}
data FinOrd
instance MCategory FinOrd where
data Ob FinOrd = FinOrdOb Int deriving (Eq,Ord,Show)
data Ar FinOrd = FinOrdAr Int Int [Int] deriving (Eq,Ord,Show)
id_ (FinOrdOb n) = FinOrdAr n n [0..n-1]
source (FinOrdAr s _ _) = FinOrdOb s
target (FinOrdAr _ t _) = FinOrdOb t
FinOrdAr sf tf fs >>> FinOrdAr sg tg gs | tf == sg = FinOrdAr sf tg [let j = fs !! i in gs !! j | i <- [0..sf-1] ]
instance Monoidal FinOrd where
tunit = FinOrdOb 0
tob (FinOrdOb m) (FinOrdOb n) = FinOrdOb (m+n)
tar (FinOrdAr sf tf fs) (FinOrdAr sg tg gs) = FinOrdAr (sf+sg) (tf+tg) (fs ++ map (+tf) gs)
finOrdAr s t fs | s == length fs && minimum fs >= 0 && maximum fs < t && isOrderPreserving fs
= FinOrdAr s t fs
where isOrderPreserving (f1:f2:fs) = f1 <= f2 && isOrderPreserving (f2:fs)
isOrderPreserving _ = True
data FinCard
instance MCategory FinCard where
data Ob FinCard = FinCardOb Int deriving (Eq,Ord,Show)
data Ar FinCard = FinCardAr Int Int [Int] deriving (Eq,Ord,Show)
id_ (FinCardOb n) = FinCardAr n n [0..n-1]
source (FinCardAr s _ _) = FinCardOb s
target (FinCardAr _ t _) = FinCardOb t
FinCardAr sf tf fs >>> FinCardAr sg tg gs | tf == sg = FinCardAr sf tg [let j = fs !! i in gs !! j | i <- [0..sf-1] ]
instance Monoidal FinCard where
tunit = FinCardOb 0
tob (FinCardOb m) (FinCardOb n) = FinCardOb (m+n)
tar (FinCardAr sf tf fs) (FinCardAr sg tg gs) = FinCardAr (sf+sg) (tf+tg) (fs ++ map (+tf) gs)
finCardAr s t fs | s == length fs && minimum fs >= 0 && maximum fs < t
= FinCardAr s t fs
finPerm fs | L.sort fs == [0..n-1] = FinCardAr n n fs
where n = length fs
instance MFunctor FinOrd FinCard where
fob (FinOrdOb n) = FinCardOb n
far (FinOrdAr s t fs) = FinCardAr s t fs
data Braid
instance MCategory Braid where
data Ob Braid = BraidOb Int deriving (Eq,Ord,Show)
data Ar Braid = BraidAr Int [Int] deriving (Eq,Ord,Show)
id_ (BraidOb n) = BraidAr n []
source (BraidAr n _) = BraidOb n
target (BraidAr n _) = BraidOb n
BraidAr m is >>> BraidAr n js | m == n = BraidAr m (cancel (reverse is) js)
where cancel (x:xs) (y:ys) = if x+y == 0 then cancel xs ys else reverse xs ++ x:y:ys
cancel xs ys = reverse xs ++ ys
t n 0 = BraidAr n []
t n i | 0 < i && i < n = BraidAr n [i]
| -n < i && i < 0 = BraidAr n [i]
t' n i | 0 < i && i < n = BraidAr n [-i]
instance Monoidal Braid where
tunit = BraidOb 0
tob (BraidOb m) (BraidOb n) = BraidOb (m+n)
tar (BraidAr m is) (BraidAr n js) = BraidAr (m+n) (is ++ map (+m) js)
instance Braided Braid where
twist (BraidOb m) (BraidOb n) = BraidAr (m+n) $ concat [[i..i+n-1] | i <- [m,m-1..1]]
instance MFunctor Braid FinCard where
fob (BraidOb n) = FinCardOb n
far (BraidAr n ss) = foldr (>>>) (id_ (FinCardOb n)) [finPerm ([0..ti-1] ++ [ti+1,ti] ++ [ti+2..n-1]) | si <- ss, let ti = abs si - 1]
data Vect k
instance Num k => MCategory (Vect k) where
data Ob (Vect k) = VectOb Int deriving (Eq,Ord,Show)
data Ar (Vect k) = VectAr Int Int [[Int]] deriving (Eq,Ord,Show)
id_ (VectOb n) = VectAr n n idMx where idMx = [[if i == j then 1 else 0 | j <- [1..n]] | i <- [1..n]]
source (VectAr m _ _) = VectOb m
target (VectAr _ n _) = VectOb n
VectAr r c xss >>> VectAr r' c' yss | c == r' = undefined
data Cob2
instance MCategory Cob2 where
data Ob Cob2 = O Int deriving (Eq,Ord,Show)
data Ar Cob2 = Id Int
| Unit
| Mult
| Counit
| Comult
| Par (Ar Cob2) (Ar Cob2)
| Seq (Ar Cob2) (Ar Cob2)
deriving (Eq,Ord,Show)
id_ (O n) = Id n
source (Id n) = O n
source Unit = O 0
source Mult = O 2
source Counit = O 1
source Comult = O 1
source (Par a b) = O (sa + sb) where O sa = source a; O sb = source b
source (Seq a b) = source a
target (Id n) = O n
target Unit = O 1
target Mult = O 1
target Counit = O 0
target Comult = O 2
target (Par a b) = O (ta + tb) where O ta = target a; O tb = target b
target (Seq a b) = target b
a >>> b | target a == source b = Seq a b
instance Monoidal Cob2 where
tunit = O 0
tob (O a) (O b) = O (a+b)
tar a b = Par a b
rewrite (Par (Seq a1 a2) (Seq b1 b2)) =
Seq (Par idSourceA b1')
( (Seq (Par idSourceA b2')
(Seq (Par a1' idTargetB)
(Par a2' idTargetB) ) ) )
where idSourceA = id_ (source a1)
idTargetB = id_ (target b2)
a1' = rewrite a1
a2' = rewrite a2
b1' = rewrite b1
b2' = rewrite b2
rewrite x = x