{-# LANGUAGE Safe #-}
{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
{-
Copyright (c) 2006-2011 John Goerzen <jgoerzen@complete.org>

All rights reserved.

For license and copyright information, see the file LICENSE
-}

{- |
   Module     : Data.Progress.Tracker
   Copyright  : Copyright (C) 2006-2011 John Goerzen
   SPDX-License-Identifier: BSD-3-Clause

   Stability  : stable
   Portability: portable

Tools for tracking the status of a long operation.

Written by John Goerzen, jgoerzen\@complete.org

See also "Data.Progress.Meter" -}

module Data.Progress.Tracker (
                                 -- * Introduction
                                 -- $introduction
                                 -- ** Examples
                                 -- $examples
                                 -- * Creation and Options
                                 newProgress, newProgress',
                                 addCallback, addParent,
                                 -- * Updating
                                 incrP, incrP', setP, setP', incrTotal,
                                 setTotal, finishP,
                                 -- * Reading and Processing
                                 getSpeed,
                                 withStatus,
                                 getETR,
                                 getETA,
                                 -- * Types
                                 ProgressStatus(..),
                                 Progress, ProgressTimeSource,
                                 ProgressCallback,
                                 ProgressStatuses,
                                 -- * Utilities
                                 defaultTimeSource
                               )

where
import safe Control.Concurrent.MVar
    ( modifyMVar_, withMVar, newMVar, MVar )
import safe System.Time ( getClockTime )
import safe System.Time.Utils ( clockTimeToEpoch )
import safe Data.Ratio ( (%) )

{- $introduction

ProgressTracker is a module for tracking the progress on long-running
operations.  It can be thought of as the back end engine behind
a status bar.  ProgressTracker can do things such as track how far along
a task is, provide an estimated time of completion, estimated time remaining,
current speed, etc.  It is designed to be as generic as possible; it can even
base its speed calculations on something other than the system clock.

ProgressTracker also supports a notion of a parent tracker.  This is used when
a large task is composed of several individual tasks which may also be
long-running.  Downloading many large files over the Internet is a common
example of this.

Any given ProgressTracker can be told about one or more parent trackers.
When the child tracker's status is updated, the parent tracker's status is
also updated in the same manner.  Therefore, the progress on each individual
component, as well as the overall progress, can all be kept in sync
automatically.

Finally, you can register callbacks.  Callbacks are functions that are called
whenever the status of a tracker changes.  They'll be passed the old and new
status and are intended to do things like update on-screen status displays.

The cousin module 'Data.Progress.Meter' can be used to nicely render
these trackers on a console.
-}

{- $examples

Here is an example use:

>do prog <- newProgress "mytracker" 1024
>   incrP prog 10
>   getETR prog >>= print           -- prints number of seconds remaining
>   incrP prog 500
>   finishP prog
-}

----------------------------------------------------------------------
-- TYPES
----------------------------------------------------------------------

{- | A function that, when called, yields the current time.
The default is 'defaultTimeSource'. -}
type ProgressTimeSource = IO Integer

{- | The type for a callback function for the progress tracker.
When given at creation time to 'newProgress\'' or when added via 'addCallback',
these functions get called every time the status of the tracker changes.

This function is passed two 'ProgressStatus' records: the first
reflects the status prior to the update, and the second reflects
the status after the update.

Please note that the owning 'Progress' object will be locked while the
callback is running, so the callback will not be able to make changes to it. -}
type ProgressCallback = ProgressStatus -> ProgressStatus -> IO ()

{- | The main progress status record. -}
data ProgressStatus =
     ProgressStatus {ProgressStatus -> Integer
completedUnits :: Integer,
                     ProgressStatus -> Integer
totalUnits :: Integer,
                     ProgressStatus -> Integer
startTime :: Integer,
                     ProgressStatus -> String
trackerName :: String, -- ^ An identifying string
                     ProgressStatus -> ProgressTimeSource
timeSource :: ProgressTimeSource
                    }

data ProgressRecord =
    ProgressRecord {ProgressRecord -> [Progress]
parents :: [Progress],
                    ProgressRecord -> [ProgressCallback]
callbacks :: [ProgressCallback],
                    ProgressRecord -> ProgressStatus
status :: ProgressStatus}

{- | The main Progress object. -}
newtype Progress = Progress (MVar ProgressRecord)

class ProgressStatuses a b where
    {- | Lets you examine the 'ProgressStatus' that is contained
       within a 'Progress' object.  You can simply pass
       a 'Progress' object and a function to 'withStatus', and
       'withStatus' will lock the 'Progress' object (blocking any
       modifications while you are reading it), then pass the object
       to your function.  If you happen to already have a 'ProgressStatus'
       object, withStatus will also accept it and simply pass it unmodified
       to the function. -}
    withStatus :: a -> (ProgressStatus -> b) -> b

instance ProgressStatuses Progress (IO b) where
    withStatus :: Progress -> (ProgressStatus -> IO b) -> IO b
withStatus (Progress MVar ProgressRecord
x) ProgressStatus -> IO b
func = MVar ProgressRecord -> (ProgressRecord -> IO b) -> IO b
forall a b. MVar a -> (a -> IO b) -> IO b
withMVar MVar ProgressRecord
x (\ProgressRecord
y -> ProgressStatus -> IO b
func (ProgressRecord -> ProgressStatus
status ProgressRecord
y))

instance ProgressStatuses ProgressStatus b where
    withStatus :: ProgressStatus -> (ProgressStatus -> b) -> b
withStatus ProgressStatus
x ProgressStatus -> b
func = ProgressStatus -> b
func ProgressStatus
x

----------------------------------------------------------------------
-- Creation
----------------------------------------------------------------------

{- | Create a new 'Progress' object with the given name and number
of total units initialized as given.  The start time will be initialized
with the current time at the present moment according to the system clock.
The units completed will be set to 0, the time source will be set to the
system clock, and the parents and callbacks will be empty.

If you need more control, see 'newProgress\''.

Example:

> prog <- newProgress "mytracker" 1024

-}
newProgress :: String           -- ^ Name of this tracker
            -> Integer          -- ^ Total units expected
            -> IO Progress
newProgress :: String -> Integer -> IO Progress
newProgress String
name Integer
total =
    do Integer
t <- ProgressTimeSource
defaultTimeSource
       ProgressStatus -> [ProgressCallback] -> IO Progress
newProgress' (ProgressStatus {completedUnits :: Integer
completedUnits = Integer
0, totalUnits :: Integer
totalUnits = Integer
total,
                                     startTime :: Integer
startTime = Integer
t, trackerName :: String
trackerName = String
name,
                                     timeSource :: ProgressTimeSource
timeSource = ProgressTimeSource
defaultTimeSource})
                    []

{- | Create a new 'Progress' object initialized with the given status and
callbacks.
No adjustment to the 'startTime' will be made.  If you
want to use the system clock, you can initialize 'startTime' with
the return value of 'defaultTimeSource' and also pass 'defaultTimeSource'
as the timing source. -}
newProgress' :: ProgressStatus
             -> [ProgressCallback] -> IO Progress
newProgress' :: ProgressStatus -> [ProgressCallback] -> IO Progress
newProgress' ProgressStatus
news [ProgressCallback]
newcb =
    do MVar ProgressRecord
r <- ProgressRecord -> IO (MVar ProgressRecord)
forall a. a -> IO (MVar a)
newMVar (ProgressRecord -> IO (MVar ProgressRecord))
-> ProgressRecord -> IO (MVar ProgressRecord)
forall a b. (a -> b) -> a -> b
$ ProgressRecord {parents :: [Progress]
parents = [],
                                      callbacks :: [ProgressCallback]
callbacks = [ProgressCallback]
newcb, status :: ProgressStatus
status = ProgressStatus
news}
       Progress -> IO Progress
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (MVar ProgressRecord -> Progress
Progress MVar ProgressRecord
r)

{- | Adds an new callback to an existing 'Progress'.  The callback will be
called whenever the object's status is updated, except by the call to finishP.

Please note that the Progress object will be locked while the callback is
running, so the callback will not be able to make any modifications to it.
-}
addCallback :: Progress -> ProgressCallback -> IO ()
addCallback :: Progress -> ProgressCallback -> IO ()
addCallback (Progress MVar ProgressRecord
mpo) ProgressCallback
cb = MVar ProgressRecord
-> (ProgressRecord -> IO ProgressRecord) -> IO ()
forall a. MVar a -> (a -> IO a) -> IO ()
modifyMVar_ MVar ProgressRecord
mpo ((ProgressRecord -> IO ProgressRecord) -> IO ())
-> (ProgressRecord -> IO ProgressRecord) -> IO ()
forall a b. (a -> b) -> a -> b
$ \ProgressRecord
po ->
    ProgressRecord -> IO ProgressRecord
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (ProgressRecord -> IO ProgressRecord)
-> ProgressRecord -> IO ProgressRecord
forall a b. (a -> b) -> a -> b
$ ProgressRecord
po {callbacks = cb : callbacks po}

{- | Adds a new parent to an existing 'Progress'.  The parent
will automatically have its completed and total counters incremented
by the value of those counters in the existing 'Progress'. -}
addParent :: Progress           -- ^ The child object
          -> Progress           -- ^ The parent to add to this child
          -> IO ()
addParent :: Progress -> Progress -> IO ()
addParent (Progress MVar ProgressRecord
mcpo) Progress
ppo = MVar ProgressRecord
-> (ProgressRecord -> IO ProgressRecord) -> IO ()
forall a. MVar a -> (a -> IO a) -> IO ()
modifyMVar_ MVar ProgressRecord
mcpo ((ProgressRecord -> IO ProgressRecord) -> IO ())
-> (ProgressRecord -> IO ProgressRecord) -> IO ()
forall a b. (a -> b) -> a -> b
$ \ProgressRecord
cpo ->
    do Progress -> Integer -> IO ()
incrP' Progress
ppo (ProgressStatus -> Integer
completedUnits (ProgressStatus -> Integer)
-> (ProgressRecord -> ProgressStatus) -> ProgressRecord -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressRecord -> ProgressStatus
status (ProgressRecord -> Integer) -> ProgressRecord -> Integer
forall a b. (a -> b) -> a -> b
$ ProgressRecord
cpo)
       Progress -> Integer -> IO ()
incrTotal Progress
ppo (ProgressStatus -> Integer
totalUnits (ProgressStatus -> Integer)
-> (ProgressRecord -> ProgressStatus) -> ProgressRecord -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressRecord -> ProgressStatus
status (ProgressRecord -> Integer) -> ProgressRecord -> Integer
forall a b. (a -> b) -> a -> b
$ ProgressRecord
cpo)
       ProgressRecord -> IO ProgressRecord
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (ProgressRecord -> IO ProgressRecord)
-> ProgressRecord -> IO ProgressRecord
forall a b. (a -> b) -> a -> b
$ ProgressRecord
cpo {parents = ppo : parents cpo}

{- | Call this when you are finished with the object.  It is especially
important to do this when parent objects are involved.

This will simply set the totalUnits to the current completedUnits count,
but will not call the callbacks.  It will additionally propogate
any adjustment in totalUnits to the parents, whose callbacks /will/ be
called.

This ensures that the total expected counts on the parent are always correct.
Without doing this, if, say, a transfer ended earlier than expected, ETA
values on the parent would be off since it would be expecting more data than
actually arrived. -}
finishP :: Progress -> IO ()
finishP :: Progress -> IO ()
finishP (Progress MVar ProgressRecord
mp) =
    MVar ProgressRecord
-> (ProgressRecord -> IO ProgressRecord) -> IO ()
forall a. MVar a -> (a -> IO a) -> IO ()
modifyMVar_ MVar ProgressRecord
mp ProgressRecord -> IO ProgressRecord
modfunc
    where modfunc :: ProgressRecord -> IO ProgressRecord
          modfunc :: ProgressRecord -> IO ProgressRecord
modfunc ProgressRecord
oldpr =
              do let adjustment :: Integer
adjustment = (ProgressStatus -> Integer
completedUnits (ProgressStatus -> Integer)
-> (ProgressRecord -> ProgressStatus) -> ProgressRecord -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressRecord -> ProgressStatus
status (ProgressRecord -> Integer) -> ProgressRecord -> Integer
forall a b. (a -> b) -> a -> b
$ ProgressRecord
oldpr)
                                  Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- (ProgressStatus -> Integer
totalUnits (ProgressStatus -> Integer)
-> (ProgressRecord -> ProgressStatus) -> ProgressRecord -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressRecord -> ProgressStatus
status (ProgressRecord -> Integer) -> ProgressRecord -> Integer
forall a b. (a -> b) -> a -> b
$ ProgressRecord
oldpr)
                 ProgressRecord -> (Progress -> IO ()) -> IO ()
callParents ProgressRecord
oldpr (\Progress
x -> Progress -> Integer -> IO ()
incrTotal Progress
x Integer
adjustment)
                 ProgressRecord -> IO ProgressRecord
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (ProgressRecord -> IO ProgressRecord)
-> ProgressRecord -> IO ProgressRecord
forall a b. (a -> b) -> a -> b
$ ProgressRecord
oldpr {status = (status oldpr)
                                 {totalUnits = completedUnits . status $ oldpr}}

----------------------------------------------------------------------
-- Updating
----------------------------------------------------------------------
{- | Increment the completed unit count in the 'Progress' object
by the amount given.  If the value as given exceeds the total, then
the total will also be raised to match this value so that the
completed count never exceeds the total.

You can decrease the completed unit count by supplying a negative number
here. -}
incrP :: Progress -> Integer -> IO ()
incrP :: Progress -> Integer -> IO ()
incrP Progress
po Integer
count = Progress -> (ProgressStatus -> ProgressStatus) -> IO ()
modStatus Progress
po ProgressStatus -> ProgressStatus
statusfunc
    where statusfunc :: ProgressStatus -> ProgressStatus
statusfunc ProgressStatus
s =
             ProgressStatus
s {completedUnits = newcu s,
                totalUnits = if newcu s > totalUnits s
                                 then newcu s
                                 else totalUnits s}
          newcu :: ProgressStatus -> Integer
newcu ProgressStatus
s = ProgressStatus -> Integer
completedUnits ProgressStatus
s Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
count

{- | Like 'incrP', but never modify the total. -}
incrP' :: Progress -> Integer -> IO ()
incrP' :: Progress -> Integer -> IO ()
incrP' Progress
po Integer
count =
    Progress -> (ProgressStatus -> ProgressStatus) -> IO ()
modStatus Progress
po (\ProgressStatus
s -> ProgressStatus
s {completedUnits = completedUnits s + count})

{- | Set the completed unit count in the 'Progress' object to the specified
value.  Unlike 'incrP', this function sets the count to a specific value,
rather than adding to the existing value.  If this value exceeds the total,
then the total will also be raised to match this value so that the completed
count never exceeds teh total. -}
setP :: Progress -> Integer -> IO ()
setP :: Progress -> Integer -> IO ()
setP Progress
po Integer
count = Progress -> (ProgressStatus -> ProgressStatus) -> IO ()
modStatus Progress
po ProgressStatus -> ProgressStatus
statusfunc
    where statusfunc :: ProgressStatus -> ProgressStatus
statusfunc ProgressStatus
s =
              ProgressStatus
s {completedUnits = count,
                 totalUnits = if count > totalUnits s
                                  then count
                                  else totalUnits s}

{- | Like 'setP', but never modify the total. -}
setP' :: Progress -> Integer -> IO ()
setP' :: Progress -> Integer -> IO ()
setP' Progress
po Integer
count = Progress -> (ProgressStatus -> ProgressStatus) -> IO ()
modStatus Progress
po (\ProgressStatus
s -> ProgressStatus
s {completedUnits = count})

{- | Increment the total unit count in the 'Progress' object by the amount
given.  This would rarely be needed, but could be needed in some special cases
when the total number of units is not known in advance. -}
incrTotal :: Progress -> Integer -> IO ()
incrTotal :: Progress -> Integer -> IO ()
incrTotal Progress
po Integer
count =
    Progress -> (ProgressStatus -> ProgressStatus) -> IO ()
modStatus Progress
po (\ProgressStatus
s -> ProgressStatus
s {totalUnits = totalUnits s + count})

{- | Set the total unit count in the 'Progress' object to the specified
value.  Like 'incrTotal', this would rarely be needed. -}
setTotal :: Progress -> Integer -> IO ()
setTotal :: Progress -> Integer -> IO ()
setTotal Progress
po Integer
count =
    Progress -> (ProgressStatus -> ProgressStatus) -> IO ()
modStatus Progress
po (\ProgressStatus
s -> ProgressStatus
s {totalUnits = count})

----------------------------------------------------------------------
-- Reading and Processing
----------------------------------------------------------------------

{- | Returns the speed in units processed per time unit.  (If you are
using the default time source, this would be units processed per second).
This obtains the current speed solely from analyzing the 'Progress' object.

If no time has elapsed yet, returns 0.

You can use this against either a 'Progress' object or a 'ProgressStatus'
object.  This is in the IO monad because the speed is based on the current
time.

Example:

> getSpeed progressobj >>= print

Don't let the type of this function confuse you.  It is a fancy way of saying
that it can take either a 'Progress' or a 'ProgressStatus' object, and returns
a number that is valid as any Fractional type, such as a Double, Float, or
Rational. -}
getSpeed :: (ProgressStatuses a (IO b), Fractional b) => a -> IO b
getSpeed :: forall a b. (ProgressStatuses a (IO b), Fractional b) => a -> IO b
getSpeed a
po = a -> (ProgressStatus -> IO b) -> IO b
forall a b. ProgressStatuses a b => a -> (ProgressStatus -> b) -> b
withStatus a
po ((ProgressStatus -> IO b) -> IO b)
-> (ProgressStatus -> IO b) -> IO b
forall a b. (a -> b) -> a -> b
$ \ProgressStatus
status ->
                do Integer
t <- ProgressStatus -> ProgressTimeSource
timeSource ProgressStatus
status
                   let elapsed :: Integer
elapsed = Integer
t Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- (ProgressStatus -> Integer
startTime ProgressStatus
status)
                   b -> IO b
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> IO b) -> b -> IO b
forall a b. (a -> b) -> a -> b
$ if Integer
elapsed Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0
                       then Rational -> b
forall a. Fractional a => Rational -> a
fromRational Rational
0
                       else Rational -> b
forall a. Fractional a => Rational -> a
fromRational ((ProgressStatus -> Integer
completedUnits ProgressStatus
status) Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% Integer
elapsed)

{- | Returns the estimated time remaining, in standard time units.

Returns 0 whenever 'getSpeed' would return 0.

See the comments under 'getSpeed' for information about this function's type
and result. -}
getETR :: (ProgressStatuses a (IO Integer),
           ProgressStatuses a (IO Rational)) => a -> IO Integer
getETR :: forall a.
(ProgressStatuses a ProgressTimeSource,
 ProgressStatuses a (IO Rational)) =>
a -> ProgressTimeSource
getETR a
po =
    do Rational
speed <- ((a -> IO Rational
forall a b. (ProgressStatuses a (IO b), Fractional b) => a -> IO b
getSpeed a
po)::IO Rational)
       if Rational
speed Rational -> Rational -> Bool
forall a. Eq a => a -> a -> Bool
== Rational
0
          then Integer -> ProgressTimeSource
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Integer
0
          else
              -- FIXME: potential for a race condition here, but it should
              -- be negligible
              a -> (ProgressStatus -> ProgressTimeSource) -> ProgressTimeSource
forall a b. ProgressStatuses a b => a -> (ProgressStatus -> b) -> b
withStatus a
po ((ProgressStatus -> ProgressTimeSource) -> ProgressTimeSource)
-> (ProgressStatus -> ProgressTimeSource) -> ProgressTimeSource
forall a b. (a -> b) -> a -> b
$ \ProgressStatus
status ->
                  do let remaining :: Integer
remaining = ProgressStatus -> Integer
totalUnits ProgressStatus
status Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- ProgressStatus -> Integer
completedUnits ProgressStatus
status
                     Integer -> ProgressTimeSource
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Integer -> ProgressTimeSource) -> Integer -> ProgressTimeSource
forall a b. (a -> b) -> a -> b
$ Rational -> Integer
forall b. Integral b => Rational -> b
forall a b. (RealFrac a, Integral b) => a -> b
round (Rational -> Integer) -> Rational -> Integer
forall a b. (a -> b) -> a -> b
$ (Integer -> Rational
forall a. Real a => a -> Rational
toRational Integer
remaining) Rational -> Rational -> Rational
forall a. Fractional a => a -> a -> a
/ Rational
speed

{- | Returns the estimated system clock time of completion, in standard
time units.  Returns the current time whenever 'getETR' would return 0.

See the comments under 'getSpeed' for information about this function's type
and result. -}
getETA :: (ProgressStatuses a (IO Integer),
           ProgressStatuses a (IO Rational)) => a -> IO Integer
getETA :: forall a.
(ProgressStatuses a ProgressTimeSource,
 ProgressStatuses a (IO Rational)) =>
a -> ProgressTimeSource
getETA a
po =
    do Integer
etr <- a -> ProgressTimeSource
forall a.
(ProgressStatuses a ProgressTimeSource,
 ProgressStatuses a (IO Rational)) =>
a -> ProgressTimeSource
getETR a
po
       -- FIXME: similar race potential here
       a -> (ProgressStatus -> ProgressTimeSource) -> ProgressTimeSource
forall a b. ProgressStatuses a b => a -> (ProgressStatus -> b) -> b
withStatus a
po ((ProgressStatus -> ProgressTimeSource) -> ProgressTimeSource)
-> (ProgressStatus -> ProgressTimeSource) -> ProgressTimeSource
forall a b. (a -> b) -> a -> b
$ \ProgressStatus
status ->
           do Integer
timenow <- ProgressStatus -> ProgressTimeSource
timeSource ProgressStatus
status
              Integer -> ProgressTimeSource
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Integer -> ProgressTimeSource) -> Integer -> ProgressTimeSource
forall a b. (a -> b) -> a -> b
$ Integer
timenow Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
etr

----------------------------------------------------------------------
-- Utilities
----------------------------------------------------------------------
{- | The default time source for the system.  This is defined as:

>getClockTime >>= (return . clockTimeToEpoch)
-}
defaultTimeSource :: ProgressTimeSource
defaultTimeSource :: ProgressTimeSource
defaultTimeSource = IO ClockTime
getClockTime IO ClockTime
-> (ClockTime -> ProgressTimeSource) -> ProgressTimeSource
forall a b. IO a -> (a -> IO b) -> IO b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (Integer -> ProgressTimeSource
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Integer -> ProgressTimeSource)
-> (ClockTime -> Integer) -> ClockTime -> ProgressTimeSource
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ClockTime -> Integer
forall a. Num a => ClockTime -> a
clockTimeToEpoch)

modStatus :: Progress -> (ProgressStatus -> ProgressStatus) -> IO ()
-- FIXME/TODO: handle parents
modStatus :: Progress -> (ProgressStatus -> ProgressStatus) -> IO ()
modStatus (Progress MVar ProgressRecord
mp) ProgressStatus -> ProgressStatus
func =
    MVar ProgressRecord
-> (ProgressRecord -> IO ProgressRecord) -> IO ()
forall a. MVar a -> (a -> IO a) -> IO ()
modifyMVar_ MVar ProgressRecord
mp ProgressRecord -> IO ProgressRecord
modfunc
    where modfunc :: ProgressRecord -> IO ProgressRecord
          modfunc :: ProgressRecord -> IO ProgressRecord
modfunc ProgressRecord
oldpr =
              do let newpr :: ProgressRecord
newpr = ProgressRecord
oldpr {status = func (status oldpr)}
                 (ProgressCallback -> IO ()) -> [ProgressCallback] -> IO ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (\ProgressCallback
x -> ProgressCallback
x (ProgressRecord -> ProgressStatus
status ProgressRecord
oldpr) (ProgressRecord -> ProgressStatus
status ProgressRecord
newpr))
                           (ProgressRecord -> [ProgressCallback]
callbacks ProgressRecord
oldpr)

                 -- Kick it up to the parents.
                 case (ProgressStatus -> Integer
completedUnits (ProgressStatus -> Integer)
-> (ProgressRecord -> ProgressStatus) -> ProgressRecord -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressRecord -> ProgressStatus
status (ProgressRecord -> Integer) -> ProgressRecord -> Integer
forall a b. (a -> b) -> a -> b
$ ProgressRecord
newpr) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-
                      (ProgressStatus -> Integer
completedUnits (ProgressStatus -> Integer)
-> (ProgressRecord -> ProgressStatus) -> ProgressRecord -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressRecord -> ProgressStatus
status (ProgressRecord -> Integer) -> ProgressRecord -> Integer
forall a b. (a -> b) -> a -> b
$ ProgressRecord
oldpr) of
                   Integer
0 -> () -> IO ()
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
                   Integer
x -> ProgressRecord -> (Progress -> IO ()) -> IO ()
callParents ProgressRecord
newpr (\Progress
y -> Progress -> Integer -> IO ()
incrP' Progress
y Integer
x)
                 case (ProgressStatus -> Integer
totalUnits (ProgressStatus -> Integer)
-> (ProgressRecord -> ProgressStatus) -> ProgressRecord -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressRecord -> ProgressStatus
status (ProgressRecord -> Integer) -> ProgressRecord -> Integer
forall a b. (a -> b) -> a -> b
$ ProgressRecord
newpr) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-
                      (ProgressStatus -> Integer
totalUnits (ProgressStatus -> Integer)
-> (ProgressRecord -> ProgressStatus) -> ProgressRecord -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProgressRecord -> ProgressStatus
status (ProgressRecord -> Integer) -> ProgressRecord -> Integer
forall a b. (a -> b) -> a -> b
$ ProgressRecord
oldpr) of
                   Integer
0 -> () -> IO ()
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
                   Integer
x -> ProgressRecord -> (Progress -> IO ()) -> IO ()
callParents ProgressRecord
newpr (\Progress
y -> Progress -> Integer -> IO ()
incrTotal Progress
y Integer
x)
                 ProgressRecord -> IO ProgressRecord
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ProgressRecord
newpr

callParents :: ProgressRecord -> (Progress -> IO ()) -> IO ()
callParents :: ProgressRecord -> (Progress -> IO ()) -> IO ()
callParents ProgressRecord
pr Progress -> IO ()
func = (Progress -> IO ()) -> [Progress] -> IO ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Progress -> IO ()
func (ProgressRecord -> [Progress]
parents ProgressRecord
pr)