{-# LANGUAGE TemplateHaskell
, UndecidableInstances
, MagicHash
, ScopedTypeVariables
, GADTs
, Rank2Types
, TypeOperators
, CPP
#-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Generics.RepLib.RepAux (
eqR, cast, castR, gcast, gcastR,
compareR,
findCon, Val(..), foldl_l, foldr_l, map_l, mapQ_l, mapM_l, fromTup, fromTupM, toList,
Traversal, Query, MapM,
gmapT, gmapQ, gmapM,
Traversal1, Query1, MapM1,
gmapT1, gmapQ1, gmapM1,
Typed(..),Spine(..), toSpine, fromSpine
) where
import Generics.RepLib.R
import Generics.RepLib.R1
import GHC.Base (unsafeCoerce#)
#if MIN_VERSION_base(4,7,0)
import Data.Type.Equality (TestEquality(..), (:~:)(..))
#else
import Data.Type.Equality (EqT(..), (:=:)(..))
#endif
#if MIN_VERSION_base(4,7,0)
instance TestEquality R where
testEquality ra rb =
if eqR ra rb then Just (unsafeCoerce# Refl) else Nothing
#else
instance EqT R where
eqT ra rb =
if eqR ra rb then Just (unsafeCoerce# Refl) else Nothing
#endif
eqR :: R a -> R b -> Bool
eqR Int Int = True
eqR Char Char = True
eqR Integer Integer = True
eqR Float Float = True
eqR Double Double = True
eqR Rational Rational = True
eqR IOError IOError = True
eqR (IO t1) (IO t2) = eqR t1 t2
eqR (Arrow t1 t2) (Arrow s1 s2) = eqR t1 s1 && eqR t2 s2
eqR (Data rc1 _) (Data rc2 _) = eqDT rc1 rc2
eqR (Abstract rc1) (Abstract rc2) = eqDT rc1 rc2
eqR (Equal t1 t2) (Equal s1 s2) = eqR t1 s1 && eqR t2 s2
eqR _ _ = False
eqDT :: DT -> DT -> Bool
eqDT (DT str1 rt1) (DT str2 rt2) = str1 == str2 && eqRTup rt1 rt2
instance Eq DT where
(==) = eqDT
eqRTup :: MTup R t1 -> MTup R t2 -> Bool
eqRTup MNil MNil = True
eqRTup (r1 :+: rt1) (r2 :+: rt2) = eqR r1 r2 && eqRTup rt1 rt2
eqRTup _ _ = False
castR :: R a -> R b -> a -> Maybe b
castR ra rb a =
#if MIN_VERSION_base(4,7,0)
case testEquality ra rb of
#else
case eqT ra rb of
#endif
Just Refl -> Just a
Nothing -> Nothing
cast :: forall a b. (Rep a, Rep b) => a -> Maybe b
cast x = castR rep rep x
gcastR :: forall a b c. R a -> R b -> c a -> Maybe (c b)
#if MIN_VERSION_base(4,7,0)
gcastR ra rb x = case testEquality ra rb of
#else
gcastR ra rb x = case eqT ra rb of
#endif
Just Refl -> Just x
Nothing -> Nothing
gcast :: forall a b c. (Rep a, Rep b) => c a -> Maybe (c b)
gcast = gcastR (rep :: R a) (rep :: R b)
compareR :: R a -> R b -> Ordering
compareR Int Int = EQ
compareR Int _ = LT
compareR _ Int = GT
compareR Char Char = EQ
compareR Char _ = LT
compareR _ Char = GT
compareR Integer Integer = EQ
compareR Integer _ = LT
compareR _ Integer = GT
compareR Float Float = EQ
compareR Float _ = LT
compareR _ Float = GT
compareR Double Double = EQ
compareR Double _ = LT
compareR _ Double = GT
compareR Rational Rational = EQ
compareR Rational _ = LT
compareR _ Rational = GT
compareR IOError IOError = EQ
compareR IOError _ = LT
compareR _ IOError = GT
compareR (IO r1) (IO r2) = compareR r1 r2
compareR (IO _) _ = LT
compareR _ (IO _) = GT
compareR (Arrow r1 r2) (Arrow r3 r4) =
case compareR r1 r3 of
EQ -> compareR r2 r4
ord -> ord
compareR (Arrow _ _) _ = LT
compareR _ (Arrow _ _) = GT
compareR (Data dt1 _) (Data dt2 _) = compare dt1 dt2
compareR (Data _ _) _ = LT
compareR _ (Data _ _) = GT
compareR (Abstract dt1) (Abstract dt2) = compare dt1 dt2
compareR (Abstract _) _ = LT
compareR _ (Abstract _) = GT
compareR (Equal t1 t2) (Equal s1 s2) =
case compareR t1 s1 of
EQ -> compareR t2 s2
ord -> ord
instance Ord DT where
compare (DT str1 reps1) (DT str2 reps2) =
case compare str1 str2 of
EQ -> compareMTup reps1 reps2
other -> other
compareMTup :: MTup R l -> MTup R l' -> Ordering
compareMTup MNil MNil = EQ
compareMTup MNil _ = LT
compareMTup _ MNil = GT
compareMTup (a :+: as) (b :+: bs) =
case compareR a b of
EQ -> compareMTup as bs
other -> other
data Val ctx a where
Val :: Emb l a -> MTup ctx l -> l -> Val ctx a
findCon :: [Con ctx a] -> a -> Val ctx a
findCon (Con rcd rec : rest) x = case (from rcd x) of
Just ys -> Val rcd rec ys
Nothing -> findCon rest x
findCon [] _ = error "findCon: panic: exhausted constructor list without finding a match"
foldr_l :: (forall a. Rep a => ctx a -> a -> b -> b) -> b
-> (MTup ctx l) -> l -> b
foldr_l _ b MNil Nil = b
foldr_l f b (ca :+: cl) (a :*: l) = f ca a (foldr_l f b cl l )
foldl_l :: (forall a. Rep a => ctx a -> b -> a -> b) -> b
-> (MTup ctx l) -> l -> b
foldl_l _ b MNil Nil = b
foldl_l f b (ca :+: cl) (a :*: l) = foldl_l f (f ca b a) cl l
map_l :: (forall a. Rep a => ctx a -> a -> a)
-> (MTup ctx l) -> l -> l
map_l _ MNil Nil = Nil
map_l f (ca :+: cl) (a :*: l) = (f ca a) :*: (map_l f cl l)
mapQ_l :: (forall a. Rep a => ctx a -> a -> r) -> MTup ctx l -> l -> [r]
mapQ_l _ MNil Nil = []
mapQ_l q (r :+: rs) (a :*: l) = q r a : mapQ_l q rs l
mapM_l :: (Monad m) => (forall a. Rep a => ctx a -> a -> m a) -> MTup ctx l -> l -> m l
mapM_l _ MNil Nil = return Nil
mapM_l f (ca :+: cl) (a :*: l) = do
x1 <- f ca a
x2 <- mapM_l f cl l
return (x1 :*: x2)
fromTup :: (forall a. Rep a => ctx a -> a) -> MTup ctx l -> l
fromTup _ MNil = Nil
fromTup f (b :+: l) = (f b) :*: (fromTup f l)
fromTupM :: (Monad m) => (forall a. Rep a => ctx a -> m a) -> MTup ctx l -> m l
fromTupM _ MNil = return Nil
fromTupM f (b :+: l) = do hd <- f b
tl <- fromTupM f l
return (hd :*: tl)
toList :: (forall a. Rep a => ctx a -> b) -> MTup ctx l -> [b]
toList _ MNil = []
toList f (b :+: l) = f b : toList f l
type Traversal = forall a. Rep a => a -> a
gmapT :: forall a. Rep a => Traversal -> a -> a
gmapT t =
case (rep :: R a) of
(Data _ cons) -> \x ->
case (findCon cons x) of
Val emb reps ys -> to emb (map_l (const t) reps ys)
_ -> id
type Query r = forall a. Rep a => a -> r
gmapQ :: forall a r. Rep a => Query r -> a -> [r]
gmapQ q =
case (rep :: R a) of
(Data _ cons) -> \x ->
case (findCon cons x) of
Val _ reps ys -> mapQ_l (const q) reps ys
_ -> const []
type MapM m = forall a. Rep a => a -> m a
gmapM :: forall a m. (Rep a, Monad m) => MapM m -> a -> m a
gmapM m = case (rep :: R a) of
(Data _ cons) -> \x ->
case (findCon cons x) of
Val emb reps ys -> do l <- mapM_l (const m) reps ys
return (to emb l)
_ -> return
type Traversal1 ctx = forall a. Rep a => ctx a -> a -> a
gmapT1 :: forall a ctx. (Rep1 ctx a) => Traversal1 ctx -> a -> a
gmapT1 t =
case (rep1 :: R1 ctx a) of
(Data1 _ cons) -> \x ->
case (findCon cons x) of
Val emb recs kids -> to emb (map_l t recs kids)
_ -> id
type Query1 ctx r = forall a. Rep a => ctx a -> a -> r
gmapQ1 :: forall a ctx r. (Rep1 ctx a) => Query1 ctx r -> a -> [r]
gmapQ1 q =
case (rep1 :: R1 ctx a) of
(Data1 _ cons) -> \x ->
case (findCon cons x) of
Val _ recs kids -> mapQ_l q recs kids
_ -> const []
type MapM1 ctx m = forall a. Rep a => ctx a -> a -> m a
gmapM1 :: forall a ctx m. (Rep1 ctx a, Monad m) => MapM1 ctx m -> a -> m a
gmapM1 m = case (rep1 :: R1 ctx a) of
(Data1 _ cons) -> \x ->
case (findCon cons x) of
Val emb rec ys -> do l <- mapM_l m rec ys
return (to emb l)
_ -> return
data Typed a = a ::: R a
infixr 7 :::
data Spine a where
Constr :: a -> Spine a
(:<>) :: Spine (a -> b) -> Typed a -> Spine b
toSpineR :: R a -> a -> Spine a
toSpineR (Data _ cons) a =
case (findCon cons a) of
Val emb reps kids -> toSpineRl reps kids (to emb)
toSpineR _ a = Constr a
toSpineRl :: MTup R l -> l -> (l -> a) -> Spine a
toSpineRl MNil Nil into = Constr (into Nil)
toSpineRl (ra :+: rs) (a :*: l) into =
(toSpineRl rs l into') :<> (a ::: ra)
where into' tl1 x1 = into (x1 :*: tl1)
toSpine :: Rep a => a -> Spine a
toSpine = toSpineR rep
fromSpine :: Spine a -> a
fromSpine (Constr x) = x
fromSpine (x :<> (y:::_)) = fromSpine x y