Safe Haskell | Safe-Inferred |
---|---|
Language | GHC2021 |
Extra module of pre-defined SegAct
instances and helpful monoids.
Since: 1.0.0.0
Synopsis
- class Monoid f => SegAct f a where
- segAct :: f -> a -> a
- segActWithLength :: Int -> f -> a -> a
- newtype Affine1 a = Affine1 (Affine1Repr a)
- type Affine1Repr a = (a, a)
- newtype Mat2x2 a = Mat2x2 (Mat2x2Repr a)
- type Mat2x2Repr a = (a, a, a, a)
- newtype V2 a = V2 (V2Repr a)
- type V2Repr a = (a, a)
- newtype RangeAdd a = RangeAdd a
- newtype RangeSet a = RangeSet (RangeSetRepr a)
- type RangeSetRepr a = (Bit, a)
- data RollingHash b p
Re-exports
It's mainly a list. It is recommended to use specific submodules.
SegAct
class Monoid f => SegAct f a where Source #
Typeclass reprentation of the LazySegTree
properties. User can implement either segAct
or
segActWithLength
.
Instances should satisfy the follwing properties:
- Left monoid action
segAct
(f2<>
f1) x =segAct
f2 (segAct
f1 x)- Identity map
segAct
mempty
x = x- Endomorphism
segAct
f (x1<>
x2) = (segAct
f x1)<>
(segAct
f x2)
If you implement SegAct
via segActWithLength
, satisfy one more propety:
- Linear left monoid action
.segActWithLength
len f a =stimes
len (segAct
f a) a
Invariant
In SegAct
instances, new semigroup values are always given from the left: new
. The
order is important for non-commutative monoid implementations.<>
old
Example instance
Take Affine1
as an example of type \(F\).
{-# LANGUAGE TypeFamilies #-} import AtCoder.LazySegTree qualified as LST import AtCoder.LazySegTree (SegAct (..)) import Data.Monoid import Data.Vector.Generic qualified as VG import Data.Vector.Generic.Mutable qualified as VGM import Data.Vector.Unboxed qualified as VU import Data.Vector.Unboxed.Mutable qualified as VUM -- | f x = a * x + b. It's implemented as a newtype of `(a, a)` for easyUnbox
deriving. newtypeAffine1
a =Affine1
(Affine1
a) deriving newtype (Eq
,Ord
,Show
) -- | This type alias makes theUnbox
deriving easier, described velow. typeAffine1Repr
a = (a, a) instance (Num
a) =>Semigroup
(Affine1
a) where {-# INLINE (<>
) #-} (Affine1
(!a1, !b1))<>
(Affine1
(!a2, !b2)) =Affine1
(a1 * a2, a1 * b2 + b1) instance (Num
a) =>Monoid
(Affine1
a) where {-# INLINEmempty
#-}mempty
=Affine1
(1, 0) instance (Num
a) =>SegAct
(Affine1
a) (Sum
a) where {-# INLINE segActWithLength #-}segActWithLength
len (Affine1
(!a, !b)) !x = a * x + b * fromIntegral len
Deriving Unbox
is very easy for such a newtype (though the efficiency is
not the maximum):
newtype instance VU.MVector s (Affine1
a) = MV_Affine1 (VU.MVector s (Affine1
a)) newtype instance VU.Vector (Affine1
a) = V_Affine1 (VU.Vector (Affine1
a)) deriving instance (VU.Unbox a) => VGM.MVector VUM.MVector (Affine1
a) deriving instance (VU.Unbox a) => VG.Vector VU.Vector (Affine1
a) instance (VU.Unbox a) => VU.Unbox (Affine1
a)
Example contest template
Define your monoid action F
and your acted monoid X
:
{-# LANGUAGE TypeFamilies #-} import AtCoder.LazySegTree qualified as LST import AtCoder.LazySegTree (SegAct (..)) import Data.Vector.Generic qualified as VG import Data.Vector.Generic.Mutable qualified as VGM import Data.Vector.Unboxed qualified as VU import Data.Vector.Unboxed.Mutable qualified as VUM {- ORMOLU_DISABLE -} -- |F
is a custom monoid action, defined as a newtype ofFRepr
. newtype F = F FRepr deriving newtype (Eq, Ord, Show) ; unF :: F -> FRepr ; unF (F x) = x ; newtype instance VU.MVector s F = MV_F (VU.MVector s FRepr) ; newtype instance VU.Vector F = V_F (VU.Vector FRepr) ; deriving instance VGM.MVector VUM.MVector F ; deriving instance VG.Vector VU.Vector F ; instance VU.Unbox F ; {- ORMOLU_ENABLE -} -- | Affine: f x = a * x + b type FRepr = (Int, Int) instance Semigroup F where --new <> old
{-# INLINE (<>) #-} (F (!a1, !b1)) <> (F (!a2, !b2)) = F (a1 * a2, a1 * b2 + b1) instance Monoid F where {-# INLINE mempty #-} mempty = F (1, 0) {- ORMOLU_DISABLE -} -- |X
is a custom acted monoid, defined as a newtype ofXRepr
. newtype X = X XRepr deriving newtype (Eq, Ord, Show) ; unX :: X -> XRepr ; unX (X x) = x; newtype instance VU.MVector s X = MV_X (VU.MVector s XRepr) ; newtype instance VU.Vector X = V_X (VU.Vector XRepr) ; deriving instance VGM.MVector VUM.MVector X ; deriving instance VG.Vector VU.Vector X ; instance VU.Unbox X ; {- ORMOLU_ENABLE -} -- | ActedInt
(same as `Sum Int`). type XRepr = Int deriving instance Num X; -- in our caseX
is aNum
. instance Semigroup X where {-# INLINE (<>) #-} (X x1) <> (X x2) = X $! x1 + x2 instance Monoid X where {-# INLINE mempty #-} mempty = X 0 instance SegAct F X where -- {-# INLINE segAct #-} -- segAct len (F (!a, !b)) (X x) = X $! a * x + b {-# INLINE segActWithLength #-} segActWithLength len (F (!a, !b)) (X x) = X $! a * x + len * b
It's tested as below:
expect :: (Eq a, Show a) => String -> a -> a -> ()
expect msg a b
| a == b = ()
| otherwise = error $ msg ++ ": expected " ++ show a ++ ", found " ++ show b
main :: IO ()
main = do
seg <- LST.build _
F @X $ VU.map X $ VU.fromList [1, 2, 3, 4]
LST.applyIn seg 1 3 $ F (2, 1) -- [1, 5, 7, 4]
LST.write seg 3 $ X 10 -- [1, 5, 7, 10]
LST.modify seg (+ (X 1)) 0 -- [2, 5, 7, 10]
!_ <- (expect "test 1" (X 5)) <$> LST.read seg 1
!_ <- (expect "test 2" (X 14)) <$> LST.prod seg 0 3 -- reads an interval [0, 3)
!_ <- (expect "test 3" (X 24)) <$> LST.allProd seg
!_ <- (expect "test 4" 2) <$> LST.maxRight seg 0 (<= (X 10)) -- sum [0, 2) = 7 <= 10
!_ <- (expect "test 5" 3) <$> LST.minLeft seg 4 (<= (X 10)) -- sum [3, 4) = 10 <= 10
putStrLn "=> test passed!"
Since: 1.0.0.0
Nothing
segAct :: f -> a -> a Source #
Lazy segment tree action \(f(x)\).
Since: 1.0.0.0
segActWithLength :: Int -> f -> a -> a Source #
Lazy segment tree action \(f(x)\) with the target monoid's length.
If you implement SegAct
with this function, you don't have to store the monoid's length,
since it's given externally.
Since: 1.0.0.0
Instances
Monoid a => SegAct (RangeSet a) a Source # | Since: 1.0.0.0 |
Defined in AtCoder.Extra.Monoid.RangeSet | |
Num a => SegAct (Affine1 (Sum a)) (Sum a) Source # | Since: 1.0.0.0 |
Num a => SegAct (Affine1 a) (Sum a) Source # | Since: 1.0.0.0 |
Num a => SegAct (Mat2x2 a) (V2 a) Source # | Since: 1.1.0.0 |
Monoid (Max a) => SegAct (RangeAdd (Max a)) (Max a) Source # | Since: 1.1.0.0 |
Monoid (Min a) => SegAct (RangeAdd (Min a)) (Min a) Source # | Since: 1.1.0.0 |
Monoid (Sum a) => SegAct (RangeAdd (Sum a)) (Sum a) Source # | Since: 1.1.0.0 |
Num a => SegAct (Dual (Affine1 (Sum a))) (Sum a) Source # | Since: 1.0.0.0 |
Num a => SegAct (Dual (Affine1 a)) (Sum a) Source # | Since: 1.0.0.0 |
Num a => SegAct (Dual (Mat2x2 a)) (V2 a) Source # | Since: 1.1.0.0 |
Affine1
Monoid action \(f: x \rightarrow ax + b\).
- Use
Mat2x2
if inverse operations are required, or if it's necessary to store the monoid length in the acted monoid (V2
).
Composition and dual
The affine transformation acts as a left monoid action: \(f_2 (f_1 v) = (f_2 \circ f_1) v\). To
apply the leftmost transformation first in a segment tree, wrap Affine1
in Data.Monoid.Dual
.
Example
>>>
import AtCoder.Extra.Monoid (SegAct(..), Affine1(..))
>>>
import AtCoder.LazySegTree qualified as LST
>>>
seg <- LST.build @_ @(Affine1 Int) @(Sum Int) $ VU.generate 3 Sum -- [0, 1, 2]
>>>
LST.applyIn seg 0 3 $ Affine1 (2, 1) -- [1, 3, 5]
>>>
getSum <$> LST.allProd seg
9
Since: 1.0.0.0
Affine1 (Affine1Repr a) |
Instances
type Affine1Repr a = (a, a) Source #
Mat2x2
Monoid action \(f: x \rightarrow ax + b\). Less efficient than Affine1
, but compatible with
inverse opereations.
Composition and dual
The affine transformation acts as a left monoid action: \(f_2 (f_1 v) = (f_2 \circ f_1) v\). To
apply the leftmost transformation first in a segment tree, wrap Mat2x2
in Data.Monoid.Dual
.
Example
>>>
import AtCoder.Extra.Monoid.Mat2x2 qualified as Mat2x2
>>>
import AtCoder.Extra.Monoid.V2 qualified as V2
>>>
import AtCoder.Extra.Monoid (SegAct(..), Mat2x2(..), V2(..))
>>>
import AtCoder.LazySegTree qualified as LST
>>>
seg <- LST.build @_ @(Mat2x2 Int) @(V2 Int) $ VU.generate 3 V2.new -- [0, 1, 2]
>>>
LST.applyIn seg 0 3 $ Mat2x2.new 2 1 -- [1, 3, 5]
>>>
V2.unV2 <$> LST.allProd seg
9
Since: 1.1.0.0
Mat2x2 (Mat2x2Repr a) |
Instances
type Mat2x2Repr a = (a, a, a, a) Source #
A monoid acted on by Mat2x2
, an affine transformation target.
Since: 1.1.0.0
Instances
Unbox a => Vector Vector (V2 a) Source # | Since: 1.1.0.0 |
Defined in AtCoder.Extra.Monoid.V2 basicUnsafeFreeze :: Mutable Vector s (V2 a) -> ST s (Vector (V2 a)) basicUnsafeThaw :: Vector (V2 a) -> ST s (Mutable Vector s (V2 a)) basicLength :: Vector (V2 a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V2 a) -> Vector (V2 a) basicUnsafeIndexM :: Vector (V2 a) -> Int -> Box (V2 a) basicUnsafeCopy :: Mutable Vector s (V2 a) -> Vector (V2 a) -> ST s () | |
Unbox a => MVector MVector (V2 a) Source # | Since: 1.1.0.0 |
Defined in AtCoder.Extra.Monoid.V2 basicLength :: MVector s (V2 a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V2 a) -> MVector s (V2 a) basicOverlaps :: MVector s (V2 a) -> MVector s (V2 a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V2 a)) basicInitialize :: MVector s (V2 a) -> ST s () basicUnsafeReplicate :: Int -> V2 a -> ST s (MVector s (V2 a)) basicUnsafeRead :: MVector s (V2 a) -> Int -> ST s (V2 a) basicUnsafeWrite :: MVector s (V2 a) -> Int -> V2 a -> ST s () basicClear :: MVector s (V2 a) -> ST s () basicSet :: MVector s (V2 a) -> V2 a -> ST s () basicUnsafeCopy :: MVector s (V2 a) -> MVector s (V2 a) -> ST s () basicUnsafeMove :: MVector s (V2 a) -> MVector s (V2 a) -> ST s () basicUnsafeGrow :: MVector s (V2 a) -> Int -> ST s (MVector s (V2 a)) | |
Num a => Monoid (V2 a) Source # | Since: 1.1.0.0 |
Num a => Semigroup (V2 a) Source # | Since: 1.1.0.0 |
Show a => Show (V2 a) Source # | Since: 1.1.0.0 |
Eq a => Eq (V2 a) Source # | Since: 1.1.0.0 |
Ord a => Ord (V2 a) Source # | Since: 1.1.0.0 |
Unbox a => Unbox (V2 a) Source # | Since: 1.1.0.0 |
Defined in AtCoder.Extra.Monoid.V2 | |
Num a => SegAct (Mat2x2 a) (V2 a) Source # | Since: 1.1.0.0 |
Num a => SegAct (Dual (Mat2x2 a)) (V2 a) Source # | Since: 1.1.0.0 |
newtype MVector s (V2 a) Source # | Since: 1.1.0.0 |
newtype Vector (V2 a) Source # | Since: 1.1.0.0 |
Range add
Monoid action \(f: x \rightarrow x + d\).
Example
>>>
import AtCoder.Extra.Monoid (SegAct(..), RangeAdd(..))
>>>
import AtCoder.LazySegTree qualified as LST
>>>
import Data.Semigroup (Max(..))
>>>
seg <- LST.build @_ @(RangeAdd (Sum Int)) @(Sum Int) $ VU.generate 3 Sum -- [0, 1, 2]
>>>
LST.applyIn seg 0 3 $ RangeAdd (Sum 5) -- [5, 6, 7]
>>>
getSum <$> LST.prod seg 0 3
18
Since: 1.0.0.0
RangeAdd a |
Instances
Range set
Monoid action \(f: x \rightarrow a\).
Example
>>>
import AtCoder.Extra.Monoid (SegAct(..), RangeSet(..))
>>>
import AtCoder.LazySegTree qualified as LST
>>>
import Data.Bit (Bit (..))
>>>
import Data.Semigroup (Product(..))
>>>
seg <- LST.build @_ @(RangeSet (Product Int)) @(Product Int) $ VU.generate 4 Product -- [0, 1, 2, 3]
>>>
LST.applyIn seg 0 3 $ RangeSet (Bit True, Product 5) -- [5, 5, 5, 3]
>>>
getProduct <$> LST.prod seg 0 4
375
Since: 1.0.0.0
RangeSet (RangeSetRepr a) |
Instances
type RangeSetRepr a = (Bit, a) Source #
Rolling hash
data RollingHash b p Source #
Rolling hash algorithm implemented as a monoid, typically stored in a segment tree. The type parameters \(b\) and \(p\) represent the B-adic base and the modulus, respectively.
Combining RollingHash
with SegTree
enables \(O(\log |s|)\) string slice creation and
\(O(1)\) slice comparison.
Example
It's convenient to define a type alias of RollingHash
:
>>>
import AtCoder.Extra.Monoid.RollingHash qualified as RH
>>>
import AtCoder.SegTree qualified as ST
>>>
import Data.Char (ord)
>>>
import Data.Semigroup (Dual (..))
>>>
type RH = RH.RollingHash 100 998244353
Let's test whether "abcba" is a palindrome:
>>>
seg <- ST.build @_ @RH . VU.map (RH.unsafeNew . ord) $ VU.fromList "abcba"
>>>
seg' <- ST.build @_ @(Dual RH) . VU.map (Dual . RH.unsafeNew . ord) $ VU.fromList "abcba"
>>>
hash1 <- ST.prod seg 2 5 -- cba (left to right)
>>>
Dual hash2 <- ST.prod seg' 0 3 -- abc (right to lett)
>>>
hash1 == hash2
True
Since: 1.1.0.0