Safe Haskell | Safe-Inferred |
---|---|
Language | GHC2021 |
Math module. It contains number-theoretic algorithms.
Since: 1.0.0.0
Modulus operations
:: HasCallStack | |
=> Int | \(x\) |
-> Int | \(n\) |
-> Int | \(m\) |
-> Int | \(x^n \bmod m\) |
Returns \(x^n \bmod m\).
Constraints
- \(0 \le n\)
- \(1 \le m\)
Complexity
- \(O(\log n)\)
Example
>>>
let m = 998244353
>>>
powMod 10 60 m -- 10^60 mod m
526662729
Since: 1.0.0.0
:: HasCallStack | |
=> Int | \(x\) |
-> Int | \(m\) |
-> Int | \(x^{-1} \bmod m\) |
Returns an integer \(y\) such that \(0 \le y < m\) and \(xy \equiv 1 \pmod m\).
Constraints
- \(\gcd(x, m) = 1\)
- \(1 \leq m\)
Complexity
- \(O(\log m)\)
Example
>>>
let m = 998244353
>>>
(invMod 2 m) * 2 `mod` m -- (2^(-1) mod m) * 2 mod m
1
Since: 1.0.0.0
Chinese Remainder Theorem
crt :: HasCallStack => Vector Int -> Vector Int -> (Int, Int) Source #
Given two arrays \(r,m\) with length \(n\), it solves the modular equation system
\[ x \equiv r[i] \pmod{m[i]}, \forall i \in \lbrace 0,1,\cdots, n - 1 \rbrace. \]
If there is no solution, it returns \((0, 0)\). Otherwise, all the solutions can be written as the form \(x \equiv y \pmod z\), using integers \(y, z\) \((0 \leq y < z = \mathrm{lcm}(m[i]))\). It returns this \((y, z)\) as a pair. If \(n=0\), it returns \((0, 1)\).
Constraints
- \(|r| = |m|\)
- \(1 \le m[i]\)
- \(\mathrm{lcm}(m[i])\) is in
Int
bounds.
Complexity
- \(O(n \log{\mathrm{lcm}(m[i])})\)
Example
crt
calculates \(y\) such that \(y \equiv r_i \pmod m_i, \forall i \in \lbrace 0,1,\cdots, n - 1 \rbrace\):
>>>
import Data.Vector.Unboxed qualified as VU
>>>
let rs = VU.fromList @Int [6, 7, 8, 9]
>>>
let ms = VU.fromList @Int [2, 3, 4, 5]
>>>
crt rs ms
(4,60)
The property can be checked as follows:
>>>
let (y, {- lcm ms -} _) = crt rs ms
>>>
VU.zipWith mod rs ms
[0,1,0,4]
>>>
VU.zipWith mod rs ms == VU.map (y `mod`) ms
True
Since: 1.0.0.0
Floor sum
:: HasCallStack | |
=> Int | \(n\) |
-> Int | \(m\) |
-> Int | \(a\) |
-> Int | \(b\) |
-> Int | \(\sum\limits_{i = 0}^{n - 1} \left\lfloor \frac{a \times i + b}{m} \right\rfloor\) |
Returns \(\sum\limits_{i = 0}^{n - 1} \left\lfloor \frac{a \times i + b}{m} \right\rfloor\).
Constraints
- \(0 \le n\)
- \(1 \le m\)
Complexity
- \(O(\log m)\)
Example
floorSum
calculates the number of points surrounded by a line
\(y = \frac {a \times x + b} {m} \) and \(x, y\) axes in \(O(\log m)\) time:
>>>
floorSum 5 1 1 1 -- floorSum n {- line information -} m a b
15
y ^ 6 | 5 | o line: y = x + 1 4 | o o The number of `o` is 15 3 | o o o 2 | o o o o 1 | o o o o --+-----------------> x 0 1 2 3 4 5 n = 5
Since: 1.0.0.0