{-# LANGUAGE RecordWildCards #-}
module AtCoder.FenwickTree
(
FenwickTree (nFt),
new,
build,
add,
sum,
sumMaybe,
)
where
import AtCoder.Internal.Assert qualified as ACIA
import Control.Monad (when)
import Control.Monad.Fix (fix)
import Control.Monad.Primitive (PrimMonad, PrimState)
import Data.Bits
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM
import GHC.Stack (HasCallStack)
import Prelude hiding (sum)
data FenwickTree s a = FenwickTree
{
forall s a. FenwickTree s a -> Int
nFt :: {-# UNPACK #-} !Int,
forall s a. FenwickTree s a -> MVector s a
dataFt :: !(VUM.MVector s a)
}
{-# INLINE new #-}
new :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => Int -> m (FenwickTree (PrimState m) a)
new :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
Int -> m (FenwickTree (PrimState m) a)
new Int
nFt
| Int
nFt Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 = do
MVector (PrimState m) a
dataFt <- Int -> a -> m (MVector (PrimState m) a)
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> a -> m (MVector (PrimState m) a)
VUM.replicate Int
nFt a
0
FenwickTree (PrimState m) a -> m (FenwickTree (PrimState m) a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure FenwickTree {Int
MVector (PrimState m) a
nFt :: Int
dataFt :: MVector (PrimState m) a
nFt :: Int
dataFt :: MVector (PrimState m) a
..}
| Bool
otherwise = [Char] -> m (FenwickTree (PrimState m) a)
forall a. HasCallStack => [Char] -> a
error ([Char] -> m (FenwickTree (PrimState m) a))
-> [Char] -> m (FenwickTree (PrimState m) a)
forall a b. (a -> b) -> a -> b
$ [Char]
"AtCoder.FenwickTree.new: given negative size `" [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
nFt [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
"`"
build :: (PrimMonad m, Num a, VU.Unbox a) => VU.Vector a -> m (FenwickTree (PrimState m) a)
{-# INLINE build #-}
build :: forall (m :: * -> *) a.
(PrimMonad m, Num a, Unbox a) =>
Vector a -> m (FenwickTree (PrimState m) a)
build Vector a
xs = do
FenwickTree (PrimState m) a
ft <- Int -> m (FenwickTree (PrimState m) a)
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
Int -> m (FenwickTree (PrimState m) a)
new (Int -> m (FenwickTree (PrimState m) a))
-> Int -> m (FenwickTree (PrimState m) a)
forall a b. (a -> b) -> a -> b
$ Vector a -> Int
forall a. Unbox a => Vector a -> Int
VU.length Vector a
xs
Vector a -> (Int -> a -> m ()) -> m ()
forall (m :: * -> *) a b.
(Monad m, Unbox a) =>
Vector a -> (Int -> a -> m b) -> m ()
VU.iforM_ Vector a
xs ((Int -> a -> m ()) -> m ()) -> (Int -> a -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ FenwickTree (PrimState m) a -> Int -> a -> m ()
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> a -> m ()
add FenwickTree (PrimState m) a
ft
FenwickTree (PrimState m) a -> m (FenwickTree (PrimState m) a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure FenwickTree (PrimState m) a
ft
{-# INLINE add #-}
add :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> a -> m ()
add :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> a -> m ()
add FenwickTree {Int
MVector (PrimState m) a
nFt :: forall s a. FenwickTree s a -> Int
dataFt :: forall s a. FenwickTree s a -> MVector s a
nFt :: Int
dataFt :: MVector (PrimState m) a
..} Int
p0 a
x = do
let !()
_ = HasCallStack => [Char] -> Int -> Int -> ()
[Char] -> Int -> Int -> ()
ACIA.checkIndex [Char]
"AtCoder.FenwickTree.add" Int
p0 Int
nFt
let p1 :: Int
p1 = Int
p0 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
(((Int -> m ()) -> Int -> m ()) -> Int -> m ())
-> Int -> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip ((Int -> m ()) -> Int -> m ()) -> Int -> m ()
forall a. (a -> a) -> a
fix Int
p1 (((Int -> m ()) -> Int -> m ()) -> m ())
-> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int -> m ()
loop Int
p -> do
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
nFt) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
MVector (PrimState m) a -> (a -> a) -> Int -> m ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> a) -> Int -> m ()
VGM.modify MVector (PrimState m) a
dataFt (a -> a -> a
forall a. Num a => a -> a -> a
+ a
x) (Int
p Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
Int -> m ()
loop (Int -> m ()) -> Int -> m ()
forall a b. (a -> b) -> a -> b
$! Int
p Int -> Int -> Int
forall a. Num a => a -> a -> a
+ (Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. (-Int
p))
{-# INLINE prefixSum #-}
prefixSum :: (PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> m a
prefixSum :: forall (m :: * -> *) a.
(PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> m a
prefixSum FenwickTree {Int
MVector (PrimState m) a
nFt :: forall s a. FenwickTree s a -> Int
dataFt :: forall s a. FenwickTree s a -> MVector s a
nFt :: Int
dataFt :: MVector (PrimState m) a
..} = a -> Int -> m a
inner a
0
where
inner :: a -> Int -> m a
inner !a
acc !Int
r
| Int
r Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0 = a -> m a
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
acc
| Bool
otherwise = do
a
dx <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(HasCallStack, PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
VGM.read MVector (PrimState m) a
dataFt (Int
r Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
a -> Int -> m a
inner (a
acc a -> a -> a
forall a. Num a => a -> a -> a
+ a
dx) (Int
r Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
r Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. (-Int
r))
{-# INLINE sum #-}
sum :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m a
sum :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m a
sum ft :: FenwickTree (PrimState m) a
ft@FenwickTree {Int
nFt :: forall s a. FenwickTree s a -> Int
nFt :: Int
nFt} Int
l Int
r
| Bool -> Bool
not (Int -> Int -> Int -> Bool
ACIA.testInterval Int
l Int
r Int
nFt) = [Char] -> Int -> Int -> Int -> m a
forall a. HasCallStack => [Char] -> Int -> Int -> Int -> a
ACIA.errorInterval [Char]
"AtCoder.FenwickTree.sum" Int
l Int
r Int
nFt
| Bool
otherwise = FenwickTree (PrimState m) a -> Int -> Int -> m a
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m a
unsafeSum FenwickTree (PrimState m) a
ft Int
l Int
r
{-# INLINE sumMaybe #-}
sumMaybe :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m (Maybe a)
sumMaybe :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m (Maybe a)
sumMaybe ft :: FenwickTree (PrimState m) a
ft@FenwickTree {Int
nFt :: forall s a. FenwickTree s a -> Int
nFt :: Int
nFt} Int
l Int
r
| Bool -> Bool
not (Int -> Int -> Int -> Bool
ACIA.testInterval Int
l Int
r Int
nFt) = Maybe a -> m (Maybe a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe a
forall a. Maybe a
Nothing
| Bool
otherwise = a -> Maybe a
forall a. a -> Maybe a
Just (a -> Maybe a) -> m a -> m (Maybe a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> FenwickTree (PrimState m) a -> Int -> Int -> m a
forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m a
unsafeSum FenwickTree (PrimState m) a
ft Int
l Int
r
{-# INLINE unsafeSum #-}
unsafeSum :: (HasCallStack, PrimMonad m, Num a, VU.Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m a
unsafeSum :: forall (m :: * -> *) a.
(HasCallStack, PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> Int -> m a
unsafeSum FenwickTree (PrimState m) a
ft Int
l Int
r = do
a
xr <- FenwickTree (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> m a
prefixSum FenwickTree (PrimState m) a
ft Int
r
a
xl <- FenwickTree (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Num a, Unbox a) =>
FenwickTree (PrimState m) a -> Int -> m a
prefixSum FenwickTree (PrimState m) a
ft Int
l
a -> m a
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (a -> m a) -> a -> m a
forall a b. (a -> b) -> a -> b
$! a
xr a -> a -> a
forall a. Num a => a -> a -> a
- a
xl