{-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE TypeOperators #-} -- | -- Module : Data.Array.Accelerate.Data.Fold -- Copyright : [2016..2020] The Accelerate Team -- License : BSD3 -- -- Maintainer : Trevor L. McDonell <trevor.mcdonell@gmail.com> -- Stability : experimental -- Portability : non-portable (GHC extensions) -- -- Combine folds in 'Applicative' style to generate multiple results with -- a single pass over the array. Based on Max Rabkin's "Beautiful Folding" [1] -- and talks by Gabriel Gonzalez [2]. -- -- 1. <http://squing.blogspot.com/2008/11/beautiful-folding.html> -- 2. <https://www.youtube.com/watch?v=6a5Ti0r8Q2s> -- module Data.Array.Accelerate.Data.Fold ( Fold(..), runFold, ) where import Data.Array.Accelerate.Classes.Floating as A import Data.Array.Accelerate.Classes.Fractional as A import Data.Array.Accelerate.Classes.Num as A import Data.Array.Accelerate.Data.Monoid import Data.Array.Accelerate.Language as A import Data.Array.Accelerate.Lift import Data.Array.Accelerate.Smart ( Acc, Exp, constant ) import Data.Array.Accelerate.Sugar.Array import Data.Array.Accelerate.Sugar.Elt import Data.Array.Accelerate.Sugar.Shape import Prelude hiding ( sum, product, length ) import Control.Applicative as P import qualified Prelude as P -- | 'Fold' describes how to process data of some 'i'nput type into some -- 'o'utput type, via a reduction using some intermediate Monoid 'w'. For -- example, both 'sum' and 'length' below use the 'Sum' monoid: -- -- > sum = Fold (lift . Sum) (getSum . unlift) -- > length = Fold (\_ -> 1) (getSum . unlift) -- -- The key is that 'Fold's can be combined using 'Applicative' in order to -- produce multiple outputs from a /single/ reduction of the array. For example: -- -- > average = (/) <$> sum <*> length -- -- This computes both the sum of the array as well as its length in a single -- traversal, then combines both results to compute the average. -- -- Because 'Fold' has some numeric instances, this can also be defined more -- succinctly as: -- -- > average = sum / length -- -- A more complex example: -- -- > sumOfSquares = Fold (lift . Sum . (^2)) (getSum . unlift) -- > standardDeviation = sqrt ((sumOfSquares / length) - (sum / length) ^ 2) -- -- These will all execute with a single reduction kernel and a single map to -- summarise (combine) the results. -- data Fold i o where Fold :: (Elt w, Monoid (Exp w)) => (i -> Exp w) -- transform input element into internal monoid type -> (Exp w -> o) -- summarise the reduction to retrieve the final result -> Fold i o -- | Apply a 'Fold' to an array. -- runFold :: (Shape sh, Elt i, Elt o) => Fold (Exp i) (Exp o) -> Acc (Array (sh:.Int) i) -> Acc (Array sh o) runFold (Fold tally summarise) is = A.map summarise $ A.fold mappend mempty $ A.map tally is -- sum :: A.Num e => Fold (Exp e) (Exp e) -- sum = Fold (lift . Sum) (getSum . unlift) -- product :: A.Num e => Fold (Exp e) (Exp e) -- product = Fold (lift . Product) (getProduct . unlift) -- length :: A.Num i => Fold (Exp e) (Exp i) -- length = Fold (\_ -> 1) (getSum . unlift) -- combine2 :: (Elt a, Elt b) => Exp a -> Exp b -> Exp (a,b) -- combine2 a b = lift (a,b) -- combine3 :: (Elt a, Elt b, Elt c) => Exp a -> Exp b -> Exp c -> Exp (a,b,c) -- combine3 a b c = lift (a,b,c) -- combine4 :: (Elt a, Elt b, Elt c, Elt d) => Exp a -> Exp b -> Exp c -> Exp d -> Exp (a,b,c,d) -- combine4 a b c d = lift (a,b,c,d) -- combine5 :: (Elt a, Elt b, Elt c, Elt d, Elt e) => Exp a -> Exp b -> Exp c -> Exp d -> Exp e -> Exp (a,b,c,d,e) -- combine5 a b c d e = lift (a,b,c,d,e) -- Instances for 'Fold' -- -------------------- instance P.Functor (Fold i) where fmap k (Fold tally summarise) = Fold tally (k . summarise) instance P.Applicative (Fold i) where pure o = Fold (\_ -> constant ()) (\_ -> o) Fold tF sF <*> Fold tX sX = Fold tally summarise where tally i = lift (tF i, tX i) summarise t = let (mF, mX) = unlift t in sF mF (sX mX) instance A.Num b => P.Num (Fold a (Exp b)) where (+) = liftA2 (+) (-) = liftA2 (-) (*) = liftA2 (*) negate = fmap negate abs = fmap abs signum = fmap signum fromInteger n = pure (A.fromInteger n) instance A.Fractional b => P.Fractional (Fold a (Exp b)) where (/) = liftA2 (/) recip = fmap recip fromRational n = pure (A.fromRational n) instance A.Floating b => P.Floating (Fold a (Exp b)) where pi = pure pi sin = fmap sin cos = fmap cos tan = fmap tan asin = fmap asin acos = fmap acos atan = fmap atan sinh = fmap sinh cosh = fmap cosh tanh = fmap tanh asinh = fmap asinh acosh = fmap acosh atanh = fmap atanh exp = fmap exp sqrt = fmap sqrt log = fmap log (**) = liftA2 (**) logBase = liftA2 logBase