Copyright | (c) 2011-2016 Bryan O'Sullivan (c) 2011 MailRank, Inc. |
---|---|
License | BSD3 |
Maintainer | Bryan O'Sullivan <bos@serpentine.com> |
Stability | experimental |
Portability | portable |
Safe Haskell | None |
Language | Haskell2010 |
Types for working with JSON data.
- data Value
- type Encoding = Encoding' Value
- unsafeToEncoding :: Builder -> Encoding' a
- fromEncoding :: Encoding' tag -> Builder
- data Series
- type Array = Vector Value
- emptyArray :: Value
- type Pair = (Text, Value)
- type Object = HashMap Text Value
- emptyObject :: Value
- newtype DotNetTime = DotNetTime {}
- typeMismatch :: String -> Value -> Parser a
- data Parser a
- data Result a
- class FromJSON a where
- fromJSON :: FromJSON a => Value -> Result a
- parse :: (a -> Parser b) -> a -> Result b
- parseEither :: (a -> Parser b) -> a -> Either String b
- parseMaybe :: (a -> Parser b) -> a -> Maybe b
- class ToJSON a where
- class KeyValue kv where
- modifyFailure :: (String -> String) -> Parser a -> Parser a
- class ToJSONKey a where
- data ToJSONKeyFunction a
- = ToJSONKeyText !(a -> Text) !(a -> Encoding' Text)
- | ToJSONKeyValue !(a -> Value) !(a -> Encoding)
- toJSONKeyText :: (a -> Text) -> ToJSONKeyFunction a
- contramapToJSONKeyFunction :: (b -> a) -> ToJSONKeyFunction a -> ToJSONKeyFunction b
- class FromJSONKey a where
- data FromJSONKeyFunction a
- = FromJSONKeyCoerce !(CoerceText a)
- | FromJSONKeyText !(Text -> a)
- | FromJSONKeyTextParser !(Text -> Parser a)
- | FromJSONKeyValue !(Value -> Parser a)
- fromJSONKeyCoerce :: Coercible Text a => FromJSONKeyFunction a
- coerceFromJSONKeyFunction :: Coercible a b => FromJSONKeyFunction a -> FromJSONKeyFunction b
- mapFromJSONKeyFunction :: (a -> b) -> FromJSONKeyFunction a -> FromJSONKeyFunction b
- class FromJSON1 f where
- parseJSON1 :: (FromJSON1 f, FromJSON a) => Value -> Parser (f a)
- class FromJSON2 f where
- parseJSON2 :: (FromJSON2 f, FromJSON a, FromJSON b) => Value -> Parser (f a b)
- class ToJSON1 f where
- toJSON1 :: (ToJSON1 f, ToJSON a) => f a -> Value
- toEncoding1 :: (ToJSON1 f, ToJSON a) => f a -> Encoding
- class ToJSON2 f where
- toJSON2 :: (ToJSON2 f, ToJSON a, ToJSON b) => f a b -> Value
- toEncoding2 :: (ToJSON2 f, ToJSON a, ToJSON b) => f a b -> Encoding
- class GFromJSON arity f where
- data FromArgs arity a where
- class GToJSON arity f where
- class GToEncoding arity f where
- data ToArgs res arity a where
- data Zero
- data One
- genericToJSON :: (Generic a, GToJSON Zero (Rep a)) => Options -> a -> Value
- genericLiftToJSON :: (Generic1 f, GToJSON One (Rep1 f)) => Options -> (a -> Value) -> ([a] -> Value) -> f a -> Value
- genericToEncoding :: (Generic a, GToEncoding Zero (Rep a)) => Options -> a -> Encoding
- genericLiftToEncoding :: (Generic1 f, GToEncoding One (Rep1 f)) => Options -> (a -> Encoding) -> ([a] -> Encoding) -> f a -> Encoding
- genericParseJSON :: (Generic a, GFromJSON Zero (Rep a)) => Options -> Value -> Parser a
- genericLiftParseJSON :: (Generic1 f, GFromJSON One (Rep1 f)) => Options -> (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (f a)
- withObject :: String -> (Object -> Parser a) -> Value -> Parser a
- withText :: String -> (Text -> Parser a) -> Value -> Parser a
- withArray :: String -> (Array -> Parser a) -> Value -> Parser a
- withNumber :: String -> (Number -> Parser a) -> Value -> Parser a
- withScientific :: String -> (Scientific -> Parser a) -> Value -> Parser a
- withBool :: String -> (Bool -> Parser a) -> Value -> Parser a
- pairs :: Series -> Encoding
- foldable :: (Foldable t, ToJSON a) => t a -> Encoding
- (.:) :: FromJSON a => Object -> Text -> Parser a
- (.:?) :: FromJSON a => Object -> Text -> Parser (Maybe a)
- (.:!) :: FromJSON a => Object -> Text -> Parser (Maybe a)
- (.!=) :: Parser (Maybe a) -> a -> Parser a
- object :: [Pair] -> Value
- listEncoding :: (a -> Encoding) -> [a] -> Encoding
- listValue :: (a -> Value) -> [a] -> Value
- listParser :: (Value -> Parser a) -> Value -> Parser [a]
- data Options = Options {}
- data SumEncoding
- camelTo :: Char -> String -> String
- camelTo2 :: Char -> String -> String
- defaultOptions :: Options
- defaultTaggedObject :: SumEncoding
Core JSON types
A JSON value represented as a Haskell value.
unsafeToEncoding :: Builder -> Encoding' a Source #
Make Encoding from Builder.
Use with care! You have to make sure that the passed Builder is a valid JSON Encoding!
fromEncoding :: Encoding' tag -> Builder Source #
Acquire the underlying bytestring builder.
A series of values that, when encoded, should be separated by
commas. Since 0.11.0.0, the .=
operator is overloaded to create
either (Text, Value)
or Series
. You can use Series when
encoding directly to a bytestring builder as in the following
example:
toEncoding (Person name age) = pairs ("name" .= name <> "age" .= age)
emptyArray :: Value Source #
The empty array.
emptyObject :: Value Source #
The empty object.
Convenience types and functions
newtype DotNetTime Source #
A newtype wrapper for UTCTime
that uses the same non-standard
serialization format as Microsoft .NET, whose
System.DateTime
type is by default serialized to JSON as in the following example:
/Date(1302547608878)/
The number represents milliseconds since the Unix epoch.
DotNetTime | |
|
:: String | The name of the type you are trying to parse. |
-> Value | The actual value encountered. |
-> Parser a |
Fail parsing due to a type mismatch, with a descriptive message.
Example usage:
instance FromJSON Coord where parseJSON (Object
v) = {- type matches, life is good -} parseJSON wat =typeMismatch
"Coord" wat
Type conversion
A JSON parser.
The result of running a Parser
.
Monad Result Source # | |
Functor Result Source # | |
MonadFail Result Source # | |
Applicative Result Source # | |
Foldable Result Source # | |
Traversable Result Source # | |
Alternative Result Source # | |
MonadPlus Result Source # | |
Eq a => Eq (Result a) Source # | |
Show a => Show (Result a) Source # | |
Semigroup (Result a) Source # | |
Monoid (Result a) Source # | |
NFData a => NFData (Result a) Source # | |
class FromJSON a where Source #
A type that can be converted from JSON, with the possibility of failure.
In many cases, you can get the compiler to generate parsing code for you (see below). To begin, let's cover writing an instance by hand.
There are various reasons a conversion could fail. For example, an
Object
could be missing a required key, an Array
could be of
the wrong size, or a value could be of an incompatible type.
The basic ways to signal a failed conversion are as follows:
empty
andmzero
work, but are terse and uninformativefail
yields a custom error messagetypeMismatch
produces an informative message for cases when the value encountered is not of the expected type
An example type and instance:
-- Allow ourselves to writeText
literals. {-# LANGUAGE OverloadedStrings #-} data Coord = Coord { x :: Double, y :: Double } instance FromJSON Coord where parseJSON (Object
v) = Coord<$>
v.:
"x"<*>
v.:
"y" -- We do not expect a non-Object
value here. -- We could usemzero
to fail, buttypeMismatch
-- gives a much more informative error message. parseJSON invalid =typeMismatch
"Coord" invalid
Instead of manually writing your FromJSON
instance, there are two options
to do it automatically:
- Data.Aeson.TH provides Template Haskell functions which will derive an instance at compile time. The generated instance is optimized for your type so will probably be more efficient than the following two options:
- The compiler can provide a default generic implementation for
parseJSON
.
To use the second, simply add a deriving
clause to your
datatype and declare a Generic
FromJSON
instance for your datatype without giving
a definition for parseJSON
.
For example, the previous example can be simplified to just:
{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics
data Coord = Coord { x :: Double, y :: Double } deriving Generic
instance FromJSON Coord
If DefaultSignatures
doesn't give exactly the results you want,
you can customize the generic decoding with only a tiny amount of
effort, using genericParseJSON
with your preferred Options
:
instance FromJSON Coord where parseJSON =genericParseJSON
defaultOptions
parseJSON :: Value -> Parser a Source #
parseJSON :: (Generic a, GFromJSON Zero (Rep a)) => Value -> Parser a Source #
parseJSONList :: Value -> Parser [a] Source #
fromJSON :: FromJSON a => Value -> Result a Source #
Convert a value from JSON, failing if the types do not match.
A type that can be converted to JSON.
An example type and instance:
-- Allow ourselves to writeText
literals. {-# LANGUAGE OverloadedStrings #-} data Coord = Coord { x :: Double, y :: Double } instance ToJSON Coord where toJSON (Coord x y) =object
["x".=
x, "y".=
y] toEncoding (Coord x y) =pairs
("x".=
x<>
"y".=
y)
Instead of manually writing your ToJSON
instance, there are two options
to do it automatically:
- Data.Aeson.TH provides Template Haskell functions which will derive an instance at compile time. The generated instance is optimized for your type so will probably be more efficient than the following two options:
- The compiler can provide a default generic implementation for
toJSON
.
To use the second, simply add a deriving
clause to your
datatype and declare a Generic
ToJSON
instance for your datatype without giving
definitions for toJSON
or toEncoding
.
For example, the previous example can be simplified to a more minimal instance:
{-# LANGUAGE DeriveGeneric #-} import GHC.Generics data Coord = Coord { x :: Double, y :: Double } derivingGeneric
instance ToJSON Coord where toEncoding =genericToEncoding
defaultOptions
Why do we provide an implementation for toEncoding
here? The
toEncoding
function is a relatively new addition to this class.
To allow users of older versions of this library to upgrade without
having to edit all of their instances or encounter surprising
incompatibilities, the default implementation of toEncoding
uses
toJSON
. This produces correct results, but since it performs an
intermediate conversion to a Value
, it will be less efficient
than directly emitting an Encoding
. Our one-liner definition of
toEncoding
above bypasses the intermediate Value
.
If DefaultSignatures
doesn't give exactly the results you want,
you can customize the generic encoding with only a tiny amount of
effort, using genericToJSON
and genericToEncoding
with your
preferred Options
:
instance ToJSON Coord where toJSON =genericToJSON
defaultOptions
toEncoding =genericToEncoding
defaultOptions
Convert a Haskell value to a JSON-friendly intermediate type.
toJSON :: (Generic a, GToJSON Zero (Rep a)) => a -> Value Source #
Convert a Haskell value to a JSON-friendly intermediate type.
toEncoding :: a -> Encoding Source #
Encode a Haskell value as JSON.
The default implementation of this method creates an
intermediate Value
using toJSON
. This provides
source-level compatibility for people upgrading from older
versions of this library, but obviously offers no performance
advantage.
To benefit from direct encoding, you must provide an
implementation for this method. The easiest way to do so is by
having your types implement Generic
using the DeriveGeneric
extension, and then have GHC generate a method body as follows.
instance ToJSON Coord where toEncoding =genericToEncoding
defaultOptions
toJSONList :: [a] -> Value Source #
toEncodingList :: [a] -> Encoding Source #
modifyFailure :: (String -> String) -> Parser a -> Parser a Source #
If the inner Parser
failed, modify the failure message using the
provided function. This allows you to create more descriptive error messages.
For example:
parseJSON (Object o) = modifyFailure ("Parsing of the Foo value failed: " ++) (Foo <$> o .: "someField")
Since 0.6.2.0
Keys for maps
class ToJSONKey a where Source #
Typeclass for types that can be used as the key of a map-like container
(like Map
or HashMap
). For example, since Text
has a ToJSONKey
instance and Char
has a ToJSON
instance, we can encode a value of
type Map
Text
Char
:
>>>
LBC8.putStrLn $ encode $ Map.fromList [("foo" :: Text, 'a')]
{"foo":"a"}
Since Int
also has a ToJSONKey
instance, we can similarly write:
>>>
LBC8.putStrLn $ encode $ Map.fromList [(5 :: Int, 'a')]
{"5":"a"}
JSON documents only accept strings as object keys. For any type
from base
that has a natural textual representation, it can be
expected that its ToJSONKey
instance will choose that representation.
For data types that lack a natural textual representation, an alternative is provided. The map-like container is represented as a JSON array instead of a JSON object. Each value in the array is an array with exactly two values. The first is the key and the second is the value.
For example, values of type '[Text]' cannot be encoded to a
string, so a Map
with keys of type '[Text]' is encoded as follows:
>>>
LBC8.putStrLn $ encode $ Map.fromList [(["foo","bar","baz" :: Text], 'a')]
[[["foo","bar","baz"],"a"]]
The default implementation of ToJSONKey
chooses this method of
encoding a key, using the ToJSON
instance of the type.
To use your own data type as the key in a map, all that is needed
is to write a ToJSONKey
(and possibly a FromJSONKey
) instance
for it. If the type cannot be trivially converted to and from Text
,
it is recommended that ToJSONKeyValue
is used. Since the default
implementations of the typeclass methods can build this from a
ToJSON
instance, there is nothing that needs to be written:
data Foo = Foo { fooAge :: Int, fooName :: Text } deriving (Eq,Ord,Generic) instance ToJSON Foo instance ToJSONKey Foo
That's it. We can now write:
>>>
let m = Map.fromList [(Foo 4 "bar",'a'),(Foo 6 "arg",'b')]
>>>
LBC8.putStrLn $ encode m
[[{"fooName":"bar","fooAge":4},"a"],[{"fooName":"arg","fooAge":6},"b"]]
The next case to consider is if we have a type that is a
newtype wrapper around Text
. The recommended approach is to use
generalized newtype deriving:
newtype RecordId = RecordId { getRecordId :: Text} deriving (Eq,Ord,ToJSONKey)
Then we may write:
>>>
LBC8.putStrLn $ encode $ Map.fromList [(RecordId "abc",'a')]
{"abc":"a"}
Simple sum types are a final case worth considering. Suppose we have:
data Color = Red | Green | Blue deriving (Show,Read,Eq,Ord)
It is possible to get the ToJSONKey
instance for free as we did
with Foo
. However, in this case, we have a natural way to go to
and from Text
that does not require any escape sequences. So, in
this example, ToJSONKeyText
will be used instead of ToJSONKeyValue
.
The Show
instance can be used to help write ToJSONKey
:
instance ToJSONKey Color where toJSONKey = ToJSONKeyText f g where f = Text.pack . show g = text . Text.pack . show -- text function is from Data.Aeson.Encoding
The situation of needing to turning function a -> Text
into
a ToJSONKeyFunction
is common enough that a special combinator
is provided for it. The above instance can be rewritten as:
instance ToJSONKey Color where toJSONKey = toJSONKeyText (Text.pack . show)
The performance of the above instance can be improved by
not using String
as an intermediate step when converting to
Text
. One option for improving performance would be to use
template haskell machinery from the text-show
package. However,
even with the approach, the Encoding
(a wrapper around a bytestring
builder) is generated by encoding the Text
to a ByteString
,
an intermediate step that could be avoided. The fastest possible
implementation would be:
-- Assuming that OverloadedStrings is enabled instance ToJSONKey Color where toJSONKey = ToJSONKeyText f g where f x = case x of {Red -> "Red";Green ->"Green";Blue -> "Blue"} g x = case x of {Red -> text "Red";Green -> text "Green";Blue -> text "Blue"} -- text function is from Data.Aeson.Encoding
This works because GHC can lift the encoded values out of the case statements, which means that they are only evaluated once. This approach should only be used when there is a serious need to maximize performance.
toJSONKey :: ToJSONKeyFunction a Source #
Strategy for rendering the key for a map-like container.
toJSONKey :: ToJSON a => ToJSONKeyFunction a Source #
Strategy for rendering the key for a map-like container.
toJSONKeyList :: ToJSONKeyFunction [a] Source #
This is similar in spirit to the showsList
method of Show
.
It makes it possible to give String
keys special treatment
without using OverlappingInstances
. End users should always
be able to use the default implementation of this method.
toJSONKeyList :: ToJSON a => ToJSONKeyFunction [a] Source #
data ToJSONKeyFunction a Source #
ToJSONKeyText !(a -> Text) !(a -> Encoding' Text) | key is encoded to string, produces object |
ToJSONKeyValue !(a -> Value) !(a -> Encoding) | key is encoded to value, produces array |
toJSONKeyText :: (a -> Text) -> ToJSONKeyFunction a Source #
Helper for creating textual keys.
instanceToJSONKey
MyKey wheretoJSONKey
=toJSONKeyText
myKeyToText where myKeyToText = Text.pack . show -- or showt from text-show
contramapToJSONKeyFunction :: (b -> a) -> ToJSONKeyFunction a -> ToJSONKeyFunction b Source #
Contravariant map, as ToJSONKeyFunction
is a contravariant functor.
class FromJSONKey a where Source #
Read the docs for ToJSONKey
first. This class is a conversion
in the opposite direction. If you have a newtype wrapper around Text
,
the recommended way to define instances is with generalized newtype deriving:
newtype SomeId = SomeId { getSomeId :: Text } deriving (Eq,Ord,Hashable,FromJSONKey)
fromJSONKey :: FromJSONKeyFunction a Source #
Strategy for parsing the key of a map-like container.
fromJSONKey :: FromJSON a => FromJSONKeyFunction a Source #
Strategy for parsing the key of a map-like container.
fromJSONKeyList :: FromJSONKeyFunction [a] Source #
This is similar in spirit to the readList
method of Read
.
It makes it possible to give String
keys special treatment
without using OverlappingInstances
. End users should always
be able to use the default implementation of this method.
fromJSONKeyList :: FromJSON a => FromJSONKeyFunction [a] Source #
data FromJSONKeyFunction a Source #
This type is related to ToJSONKeyFunction
. If FromJSONKeyValue
is used in the
FromJSONKey
instance, then ToJSONKeyValue
should be used in the ToJSONKey
instance. The other three data constructors for this type all correspond to
ToJSONKeyText
. Strictly speaking, FromJSONKeyTextParser
is more powerful than
FromJSONKeyText
, which is in turn more powerful than FromJSONKeyCoerce
.
For performance reasons, these exist as three options instead of one.
FromJSONKeyCoerce !(CoerceText a) | uses |
FromJSONKeyText !(Text -> a) | conversion from |
FromJSONKeyTextParser !(Text -> Parser a) | conversion from |
FromJSONKeyValue !(Value -> Parser a) | conversion for non-textual keys |
Functor FromJSONKeyFunction Source # | Only law abiding up to interpretation |
fromJSONKeyCoerce :: Coercible Text a => FromJSONKeyFunction a Source #
Construct FromJSONKeyFunction
for types coercible from Text
. This
conversion is still unsafe, as Hashable
and Eq
instances of a
should be
compatible with Text
i.e. hash values should be equal for wrapped values as well.
This property will always be maintained if the Hashable
and Eq
instances
are derived with generalized newtype deriving.
compatible with Text
i.e. hash values be equal for wrapped values as well.
On pre GHC 7.8 this is unconstrainted function.
coerceFromJSONKeyFunction :: Coercible a b => FromJSONKeyFunction a -> FromJSONKeyFunction b Source #
Semantically the same as coerceFromJSONKeyFunction = fmap coerce = coerce
.
See note on fromJSONKeyCoerce
.
mapFromJSONKeyFunction :: (a -> b) -> FromJSONKeyFunction a -> FromJSONKeyFunction b Source #
Same as fmap
. Provided for the consistency with ToJSONKeyFunction
.
Liftings to unary and binary type constructors
class FromJSON1 f where Source #
Lifting of the FromJSON
class to unary type constructors.
Instead of manually writing your FromJSON1
instance, there are two options
to do it automatically:
- Data.Aeson.TH provides Template Haskell functions which will derive an instance at compile time. The generated instance is optimized for your type so will probably be more efficient than the following two options:
- The compiler can provide a default generic implementation for
liftParseJSON
.
To use the second, simply add a deriving
clause to your
datatype and declare a Generic1
FromJSON1
instance for your datatype without giving
a definition for liftParseJSON
.
For example:
{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics
data Pair a b = Pair { pairFst :: a, pairSnd :: b } deriving Generic1
instance FromJSON a => FromJSON1 (Pair a)
If DefaultSignatures
doesn't give exactly the results you want,
you can customize the generic decoding with only a tiny amount of
effort, using genericLiftParseJSON
with your preferred Options
:
instance FromJSON a => FromJSON1 (Pair a) where liftParseJSON =genericLiftParseJSON
defaultOptions
liftParseJSON :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (f a) Source #
liftParseJSON :: (Generic1 f, GFromJSON One (Rep1 f)) => (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (f a) Source #
liftParseJSONList :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser [f a] Source #
parseJSON1 :: (FromJSON1 f, FromJSON a) => Value -> Parser (f a) Source #
Lift the standard parseJSON
function through the type constructor.
class FromJSON2 f where Source #
Lifting of the FromJSON
class to binary type constructors.
Instead of manually writing your FromJSON2
instance, Data.Aeson.TH
provides Template Haskell functions which will derive an instance at compile time.
liftParseJSON2 :: (Value -> Parser a) -> (Value -> Parser [a]) -> (Value -> Parser b) -> (Value -> Parser [b]) -> Value -> Parser (f a b) Source #
liftParseJSONList2 :: (Value -> Parser a) -> (Value -> Parser [a]) -> (Value -> Parser b) -> (Value -> Parser [b]) -> Value -> Parser [f a b] Source #
parseJSON2 :: (FromJSON2 f, FromJSON a, FromJSON b) => Value -> Parser (f a b) Source #
Lift the standard parseJSON
function through the type constructor.
class ToJSON1 f where Source #
Lifting of the ToJSON
class to unary type constructors.
Instead of manually writing your ToJSON1
instance, there are two options
to do it automatically:
- Data.Aeson.TH provides Template Haskell functions which will derive an instance at compile time. The generated instance is optimized for your type so will probably be more efficient than the following two options:
- The compiler can provide a default generic implementation for
toJSON1
.
To use the second, simply add a deriving
clause to your
datatype and declare a Generic1
ToJSON1
instance for your datatype without giving
definitions for liftToJSON
or liftToEncoding
.
For example:
{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics
data Pair = Pair { pairFst :: a, pairSnd :: b } deriving Generic1
instance ToJSON a => ToJSON1 (Pair a)
If DefaultSignatures
doesn't give exactly the results you want,
you can customize the generic encoding with only a tiny amount of
effort, using genericLiftToJSON
and genericLiftToEncoding
with
your preferred Options
:
instance ToJSON a => ToJSON1 (Pair a) where liftToJSON =genericLiftToJSON
defaultOptions
liftToEncoding =genericLiftToEncoding
defaultOptions
liftToJSON :: (a -> Value) -> ([a] -> Value) -> f a -> Value Source #
liftToJSON :: (Generic1 f, GToJSON One (Rep1 f)) => (a -> Value) -> ([a] -> Value) -> f a -> Value Source #
liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [f a] -> Value Source #
liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> f a -> Encoding Source #
liftToEncoding :: (Generic1 f, GToEncoding One (Rep1 f)) => (a -> Encoding) -> ([a] -> Encoding) -> f a -> Encoding Source #
liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [f a] -> Encoding Source #
toJSON1 :: (ToJSON1 f, ToJSON a) => f a -> Value Source #
Lift the standard toJSON
function through the type constructor.
toEncoding1 :: (ToJSON1 f, ToJSON a) => f a -> Encoding Source #
Lift the standard toEncoding
function through the type constructor.
class ToJSON2 f where Source #
Lifting of the ToJSON
class to binary type constructors.
Instead of manually writing your ToJSON2
instance, Data.Aeson.TH
provides Template Haskell functions which will derive an instance at compile time.
The compiler cannot provide a default generic implementation for liftToJSON2
,
unlike toJSON
and liftToJSON
.
liftToJSON2 :: (a -> Value) -> ([a] -> Value) -> (b -> Value) -> ([b] -> Value) -> f a b -> Value Source #
liftToJSONList2 :: (a -> Value) -> ([a] -> Value) -> (b -> Value) -> ([b] -> Value) -> [f a b] -> Value Source #
liftToEncoding2 :: (a -> Encoding) -> ([a] -> Encoding) -> (b -> Encoding) -> ([b] -> Encoding) -> f a b -> Encoding Source #
liftToEncodingList2 :: (a -> Encoding) -> ([a] -> Encoding) -> (b -> Encoding) -> ([b] -> Encoding) -> [f a b] -> Encoding Source #
toJSON2 :: (ToJSON2 f, ToJSON a, ToJSON b) => f a b -> Value Source #
Lift the standard toJSON
function through the type constructor.
toEncoding2 :: (ToJSON2 f, ToJSON a, ToJSON b) => f a b -> Encoding Source #
Lift the standard toEncoding
function through the type constructor.
Generic JSON classes
class GFromJSON arity f where Source #
Class of generic representation types that can be converted from JSON.
gParseJSON :: Options -> FromArgs arity a -> Value -> Parser (f a) Source #
This method (applied to defaultOptions
) is used as the
default generic implementation of parseJSON
(if the arity
is Zero
)
or liftParseJSON
(if the arity
is One
).
GFromJSON arity U1 Source # | |
GFromJSON One Par1 Source # | |
FromJSON1 f => GFromJSON One (Rec1 f) Source # | |
(AllNullary ((:+:) a b) allNullary, ParseSum * arity ((:+:) a b) allNullary) => GFromJSON arity ((:+:) a b) Source # | |
(FromProduct arity a, FromProduct arity b, ProductSize a, ProductSize b) => GFromJSON arity ((:*:) a b) Source # | |
ConsFromJSON arity a => GFromJSON arity (C1 c a) Source # | |
FromJSON a => GFromJSON arity (K1 i a) Source # | |
(FromJSON1 f, GFromJSON One g) => GFromJSON One ((:.:) f g) Source # | |
GFromJSON arity a => GFromJSON arity (M1 i c a) Source # | |
class GToJSON arity f where Source #
Class of generic representation types that can be converted to JSON.
gToJSON :: Options -> ToArgs Value arity a -> f a -> Value Source #
This method (applied to defaultOptions
) is used as the
default generic implementation of toJSON
(if the arity
is Zero
)
or liftToJSON
(if the arity
is One
).
GToJSON arity U1 Source # | |
GToJSON One Par1 Source # | |
ToJSON1 f => GToJSON One (Rec1 f) Source # | |
(AllNullary ((:+:) a b) allNullary, SumToJSON * arity ((:+:) a b) allNullary) => GToJSON arity ((:+:) a b) Source # | |
(WriteProduct arity a, WriteProduct arity b, ProductSize a, ProductSize b) => GToJSON arity ((:*:) a b) Source # | |
ConsToJSON arity a => GToJSON arity (C1 c a) Source # | |
ToJSON a => GToJSON arity (K1 i a) Source # | |
(ToJSON1 f, GToJSON One g) => GToJSON One ((:.:) f g) Source # | |
GToJSON arity a => GToJSON arity (M1 i c a) Source # | |
class GToEncoding arity f where Source #
Class of generic representation types that can be converted to
a JSON Encoding
.
gToEncoding :: Options -> ToArgs Encoding arity a -> f a -> Encoding Source #
This method (applied to defaultOptions
) can be used as the
default generic implementation of toEncoding
(if the arity
is Zero
)
or liftToEncoding
(if the arity
is One
).
GToEncoding arity U1 Source # | |
GToEncoding One Par1 Source # | |
ToJSON1 f => GToEncoding One (Rec1 f) Source # | |
(AllNullary ((:+:) a b) allNullary, SumToEncoding * arity ((:+:) a b) allNullary) => GToEncoding arity ((:+:) a b) Source # | |
(EncodeProduct arity a, EncodeProduct arity b) => GToEncoding arity ((:*:) a b) Source # | |
ConsToEncoding arity a => GToEncoding arity (C1 c a) Source # | |
ToJSON a => GToEncoding arity (K1 i a) Source # | |
(ToJSON1 f, GToEncoding One g) => GToEncoding One ((:.:) f g) Source # | |
GToEncoding arity a => GToEncoding arity (M1 i c a) Source # | |
A type-level indicator that ToJSON1
or FromJSON1
is being derived generically.
GToEncoding One Par1 Source # | |
GToJSON One Par1 Source # | |
GFromJSON One Par1 Source # | |
ToJSON1 f => GToEncoding One (Rec1 f) Source # | |
ToJSON1 f => GToJSON One (Rec1 f) Source # | |
FromJSON1 f => GFromJSON One (Rec1 f) Source # | |
(ToJSON1 f, GToEncoding One g) => GToEncoding One ((:.:) f g) Source # | |
(ToJSON1 f, GToJSON One g) => GToJSON One ((:.:) f g) Source # | |
(FromJSON1 f, GFromJSON One g) => GFromJSON One ((:.:) f g) Source # | |
genericToJSON :: (Generic a, GToJSON Zero (Rep a)) => Options -> a -> Value Source #
A configurable generic JSON creator. This function applied to
defaultOptions
is used as the default for toJSON
when the type
is an instance of Generic
.
genericLiftToJSON :: (Generic1 f, GToJSON One (Rep1 f)) => Options -> (a -> Value) -> ([a] -> Value) -> f a -> Value Source #
A configurable generic JSON creator. This function applied to
defaultOptions
is used as the default for liftToJSON
when the type
is an instance of Generic1
.
genericToEncoding :: (Generic a, GToEncoding Zero (Rep a)) => Options -> a -> Encoding Source #
A configurable generic JSON encoder. This function applied to
defaultOptions
is used as the default for toEncoding
when the type
is an instance of Generic
.
genericLiftToEncoding :: (Generic1 f, GToEncoding One (Rep1 f)) => Options -> (a -> Encoding) -> ([a] -> Encoding) -> f a -> Encoding Source #
A configurable generic JSON encoder. This function applied to
defaultOptions
is used as the default for liftToEncoding
when the type
is an instance of Generic1
.
genericParseJSON :: (Generic a, GFromJSON Zero (Rep a)) => Options -> Value -> Parser a Source #
A configurable generic JSON decoder. This function applied to
defaultOptions
is used as the default for parseJSON
when the
type is an instance of Generic
.
genericLiftParseJSON :: (Generic1 f, GFromJSON One (Rep1 f)) => Options -> (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (f a) Source #
A configurable generic JSON decoder. This function applied to
defaultOptions
is used as the default for liftParseJSON
when the
type is an instance of Generic1
.
Inspecting Value
s
Value
swithObject :: String -> (Object -> Parser a) -> Value -> Parser a Source #
withObject expected f value
applies f
to the Object
when value
is an Object
and fails using
otherwise.typeMismatch
expected
withText :: String -> (Text -> Parser a) -> Value -> Parser a Source #
withText expected f value
applies f
to the Text
when value
is a String
and fails using
otherwise.typeMismatch
expected
withArray :: String -> (Array -> Parser a) -> Value -> Parser a Source #
withArray expected f value
applies f
to the Array
when value
is an Array
and fails using
otherwise.typeMismatch
expected
withNumber :: String -> (Number -> Parser a) -> Value -> Parser a Source #
Deprecated: Use withScientific instead
withNumber expected f value
applies f
to the Number
when value
is a Number
.
and fails using
otherwise.typeMismatch
expected
withScientific :: String -> (Scientific -> Parser a) -> Value -> Parser a Source #
withScientific expected f value
applies f
to the Scientific
number when value
is a Number
.
and fails using
otherwise.typeMismatch
expected
withBool :: String -> (Bool -> Parser a) -> Value -> Parser a Source #
withBool expected f value
applies f
to the Bool
when value
is a Bool
and fails using
otherwise.typeMismatch
expected
(.:) :: FromJSON a => Object -> Text -> Parser a Source #
Retrieve the value associated with the given key of an Object
.
The result is empty
if the key is not present or the value cannot
be converted to the desired type.
This accessor is appropriate if the key and value must be present
in an object for it to be valid. If the key and value are
optional, use .:?
instead.
(.:?) :: FromJSON a => Object -> Text -> Parser (Maybe a) Source #
Retrieve the value associated with the given key of an Object
. The
result is Nothing
if the key is not present or value is Null
, or empty
if the value cannot be converted to the desired type.
This accessor is most useful if the key and value can be absent
from an object without affecting its validity. If the key and
value are mandatory, use .:
instead.
(.!=) :: Parser (Maybe a) -> a -> Parser a Source #
Helper for use in combination with .:?
to provide default
values for optional JSON object fields.
This combinator is most useful if the key and value can be absent
from an object without affecting its validity and we know a default
value to assign in that case. If the key and value are mandatory,
use .:
instead.
Example usage:
v1 <- o.:?
"opt_field_with_dfl" .!= "default_val" v2 <- o.:
"mandatory_field" v3 <- o.:?
"opt_field2"
listEncoding :: (a -> Encoding) -> [a] -> Encoding Source #
Helper function to use with liftToEncoding
.
Useful when writing own ToJSON1
instances.
newtype F a = F [a] -- This instance encodes String as an array of chars instanceToJSON1
F whereliftToJSON
tj _ (F xs) =liftToJSON
tj (listValue
tj) xsliftToEncoding
te _ (F xs) =liftToEncoding
te (listEncoding
te) xs instanceFromJSON1
F whereliftParseJSON
p _ v = F <$>liftParseJSON
p (listParser
p) v
listValue :: (a -> Value) -> [a] -> Value Source #
Helper function to use with liftToJSON
, see listEncoding
.
listParser :: (Value -> Parser a) -> Value -> Parser [a] Source #
Helper function to use with liftParseJSON
. See listEncoding
.
Generic and TH encoding configuration
Options that specify how to encode/decode your datatype to/from JSON.
Options | |
|
data SumEncoding Source #
Specifies how to encode constructors of a sum datatype.
TaggedObject | A constructor will be encoded to an object with a field
|
UntaggedValue | Constructor names won't be encoded. Instead only the contents of the constructor will be encoded as if the type had single constructor. JSON encodings have to be disjoint for decoding to work properly. When decoding, constructors are tried in the order of definition. If some encodings overlap, the first one defined will succeed. Note: Nullary constructors are encoded as the string (using
Note: Only the last error is kept when decoding, so in the case of mailformed JSON, only an error for the last constructor will be reported. |
ObjectWithSingleField | A constructor will be encoded to an object with a single
field named after the constructor tag (modified by the
|
TwoElemArray | A constructor will be encoded to a 2-element array where the
first element is the tag of the constructor (modified by the
|
camelTo :: Char -> String -> String Source #
Deprecated: Use camelTo2 for better results
Converts from CamelCase to another lower case, interspersing
the character between all capital letters and their previous
entries, except those capital letters that appear together,
like API
.
For use by Aeson template haskell calls.
camelTo '_' 'CamelCaseAPI' == "camel_case_api"
camelTo2 :: Char -> String -> String Source #
Better version of camelTo
. Example where it works better:
camelTo '_' 'CamelAPICase' == "camel_apicase" camelTo2 '_' 'CamelAPICase' == "camel_api_case"
defaultOptions :: Options Source #
Default encoding Options
:
Options
{fieldLabelModifier
= id ,constructorTagModifier
= id ,allNullaryToStringTag
= True ,omitNothingFields
= False ,sumEncoding
=defaultTaggedObject
,unwrapUnaryRecords
= False }
defaultTaggedObject :: SumEncoding Source #
Default TaggedObject
SumEncoding
options:
defaultTaggedObject =TaggedObject
{tagFieldName
= "tag" ,contentsFieldName
= "contents" }