aivika-4.3.4: A multi-paradigm simulation library

CopyrightCopyright (c) 2009-2015 David Sorokin <david.sorokin@gmail.com>
LicenseBSD3
MaintainerDavid Sorokin <david.sorokin@gmail.com>
Stabilityexperimental
Safe HaskellSafe
LanguageHaskell2010

Simulation.Aivika.Parameter

Contents

Description

Tested with: GHC 7.10.1

The module defines the Parameter monad that allows representing the model parameters. For example, they can be used when running the Monte-Carlo simulation.

In general, this monad is very useful for representing a computation which is external relative to the model itself.

Synopsis

Parameter

data Parameter a Source #

The Parameter monad that allows specifying the model parameters. For example, they can be used when running the Monte-Carlo simulation.

In general, this monad is very useful for representing a computation which is external relative to the model itself.

Instances

Monad Parameter Source # 

Methods

(>>=) :: Parameter a -> (a -> Parameter b) -> Parameter b #

(>>) :: Parameter a -> Parameter b -> Parameter b #

return :: a -> Parameter a #

fail :: String -> Parameter a #

Functor Parameter Source # 

Methods

fmap :: (a -> b) -> Parameter a -> Parameter b #

(<$) :: a -> Parameter b -> Parameter a #

MonadFix Parameter Source # 

Methods

mfix :: (a -> Parameter a) -> Parameter a #

Applicative Parameter Source # 

Methods

pure :: a -> Parameter a #

(<*>) :: Parameter (a -> b) -> Parameter a -> Parameter b #

(*>) :: Parameter a -> Parameter b -> Parameter b #

(<*) :: Parameter a -> Parameter b -> Parameter a #

MonadIO Parameter Source # 

Methods

liftIO :: IO a -> Parameter a #

ParameterLift Parameter Source # 
ResultComputing Parameter Source # 
Eq (Parameter a) Source # 

Methods

(==) :: Parameter a -> Parameter a -> Bool #

(/=) :: Parameter a -> Parameter a -> Bool #

Floating a => Floating (Parameter a) Source # 
Fractional a => Fractional (Parameter a) Source # 
Num a => Num (Parameter a) Source # 
Show (Parameter a) Source # 

class ParameterLift m where Source #

A type class to lift the parameters to other computations.

Minimal complete definition

liftParameter

Methods

liftParameter :: Parameter a -> m a Source #

Lift the specified Parameter computation to another computation.

runParameter :: Parameter a -> Specs -> IO a Source #

Run the parameter using the specified specs.

runParameters :: Parameter a -> Specs -> Int -> [IO a] Source #

Run the given number of parameters using the specified specs, where each parameter is distinguished by its index parameterIndex.

Error Handling

catchParameter :: Exception e => Parameter a -> (e -> Parameter a) -> Parameter a Source #

Exception handling within Parameter computations.

finallyParameter :: Parameter a -> Parameter b -> Parameter a Source #

A computation with finalization part like the finally function.

throwParameter :: Exception e => e -> Parameter a Source #

Like the standard throw function.

Predefined Parameters

simulationIndex :: Parameter Int Source #

Return the run index for the current simulation.

simulationCount :: Parameter Int Source #

Return the number of simulations currently run.

simulationSpecs :: Parameter Specs Source #

Return the simulation specs.

generatorParameter :: Parameter Generator Source #

Return the random number generator for the simulation run.

starttime :: Parameter Double Source #

Computation that returns the start simulation time.

stoptime :: Parameter Double Source #

Computation that returns the final simulation time.

dt :: Parameter Double Source #

Computation that returns the integration time step.

Memoization

memoParameter :: Parameter a -> IO (Parameter a) Source #

Memoize the Parameter computation, always returning the same value within a simulation run. However, the value will be recalculated for other simulation runs. Also it is thread-safe when different simulation runs are executed in parallel on physically different operating system threads.

Utilities

tableParameter :: Array Int a -> Parameter a Source #

Return a parameter which value is taken consequently from the specified table based on the run index of the current simulation starting from zero. After all values from the table are used, it takes again the first value of the table, then the second one and so on.