-- |
-- Module     : Simulation.Aivika.Internal.Specs
-- Copyright  : Copyright (c) 2009-2017, David Sorokin <david.sorokin@gmail.com>
-- License    : BSD3
-- Maintainer : David Sorokin <david.sorokin@gmail.com>
-- Stability  : experimental
-- Tested with: GHC 8.0.1
--
-- It defines the simulation specs and related stuff.
module Simulation.Aivika.Internal.Specs
       (Specs(..),
        Method(..),
        Run(..),
        Point(..),
        EventQueue(..),
        newEventQueue,
        basicTime,
        integIterationBnds,
        integIterationHiBnd,
        integIterationLoBnd,
        integPhaseBnds,
        integPhaseHiBnd,
        integPhaseLoBnd,
        integTimes,
        integPoints,
        integPointsStartingFrom,
        integStartPoint,
        integStopPoint,
        simulationStopPoint,
        timeGrid,
        pointAt,
        delayPoint) where

import Data.IORef

import Simulation.Aivika.Generator
import qualified Simulation.Aivika.PriorityQueue as PQ

-- | It defines the simulation specs.
data Specs = Specs { spcStartTime :: Double,    -- ^ the start time
                     spcStopTime :: Double,     -- ^ the stop time
                     spcDT :: Double,           -- ^ the integration time step
                     spcMethod :: Method,       -- ^ the integration method
                     spcGeneratorType :: GeneratorType
                     -- ^ the type of the random number generator
                   }

-- | It defines the integration method.
data Method = Euler          -- ^ Euler's method
            | RungeKutta2    -- ^ the 2nd order Runge-Kutta method
            | RungeKutta4    -- ^ the 4th order Runge-Kutta method
            | RungeKutta4b   -- ^ the 4th order Runge-Kutta 3/8-method
            deriving (Eq, Ord, Show)

-- | It indentifies the simulation run.
data Run = Run { runSpecs :: Specs,  -- ^ the simulation specs
                 runIndex :: Int,    -- ^ the current simulation run index
                 runCount :: Int,    -- ^ the total number of runs in this experiment
                 runEventQueue :: EventQueue,  -- ^ the event queue
                 runGenerator :: Generator     -- ^ the random number generator
               }

-- | It defines the simulation point appended with the additional information.
data Point = Point { pointSpecs :: Specs,    -- ^ the simulation specs
                     pointRun :: Run,        -- ^ the simulation run
                     pointTime :: Double,    -- ^ the current time
                     pointIteration :: Int,  -- ^ the current iteration
                     pointPhase :: Int       -- ^ the current phase
                   }

-- | It represents the event queue.
data EventQueue = EventQueue { queuePQ :: PQ.PriorityQueue (Point -> IO ()),
                               -- ^ the underlying priority queue
                               queueBusy :: IORef Bool,
                               -- ^ whether the queue is currently processing events
                               queueTime :: IORef Double
                               -- ^ the actual time of the event queue
                             }

-- | Create a new event queue by the specified specs.
newEventQueue :: Specs -> IO EventQueue
newEventQueue specs = 
  do f <- newIORef False
     t <- newIORef $ spcStartTime specs
     pq <- PQ.newQueue
     return EventQueue { queuePQ   = pq,
                         queueBusy = f,
                         queueTime = t }

-- | Returns the integration iterations starting from zero.
integIterations :: Specs -> [Int]
integIterations sc = [i1 .. i2] where
  i1 = integIterationLoBnd sc
  i2 = integIterationHiBnd sc

-- | Returns the first and last integration iterations.
integIterationBnds :: Specs -> (Int, Int)
integIterationBnds sc = (i1, i2) where
  i1 = integIterationLoBnd sc
  i2 = integIterationHiBnd sc

-- | Returns the first integration iteration, i.e. zero.
integIterationLoBnd :: Specs -> Int
integIterationLoBnd sc = 0

-- | Returns the last integration iteration.
integIterationHiBnd :: Specs -> Int
integIterationHiBnd sc =
  let n = round ((spcStopTime sc - 
                  spcStartTime sc) / spcDT sc)
  in if n < 0
     then
       error $
       "The iteration number in the stop time has a negative value. " ++
       "Either the simulation specs are incorrect, " ++
       "or a floating point overflow occurred, " ++
       "for example, when using a too small integration time step. " ++
       "You have to define this time step regardless of " ++
       "whether you actually use it or not, " ++
       "for Aivika allows combining the ordinary differential equations " ++
       "with the discrete event simulation within one model. " ++
       "So, if you are still using the 32-bit architecture and " ++
       "you do need a small integration time step " ++
       "for integrating the equations " ++
       "then you might think of using the 64-bit architecture. " ++
       "Although you could probably just forget " ++
       "to increase the time step " ++
       "after increasing the stop time: integIterationHiBnd"
     else n

-- | Returns the phases for the specified simulation specs starting from zero.
integPhases :: Specs -> [Int]
integPhases sc = 
  case spcMethod sc of
    Euler -> [0]
    RungeKutta2 -> [0, 1]
    RungeKutta4 -> [0, 1, 2, 3]
    RungeKutta4b -> [0, 1, 2, 3]

-- | Returns the first and last integration phases.
integPhaseBnds :: Specs -> (Int, Int)
integPhaseBnds sc = 
  case spcMethod sc of
    Euler -> (0, 0)
    RungeKutta2 -> (0, 1)
    RungeKutta4 -> (0, 3)
    RungeKutta4b -> (0, 3)

-- | Returns the first integration phase, i.e. zero.
integPhaseLoBnd :: Specs -> Int
integPhaseLoBnd sc = 0
                  
-- | Returns the last integration phase, 0 for Euler's method, 1 for RK2 and 3 for RK4.
integPhaseHiBnd :: Specs -> Int
integPhaseHiBnd sc = 
  case spcMethod sc of
    Euler -> 0
    RungeKutta2 -> 1
    RungeKutta4 -> 3
    RungeKutta4b -> 3

-- | Returns a simulation time for the integration point specified by 
-- the specs, iteration and phase.
basicTime :: Specs -> Int -> Int -> Double
basicTime sc n ph =
  if ph < 0 then 
    error "Incorrect phase: basicTime"
  else
    spcStartTime sc + n' * spcDT sc + delta (spcMethod sc) ph 
      where n' = fromIntegral n
            delta Euler       0 = 0
            delta RungeKutta2 0 = 0
            delta RungeKutta2 1 = spcDT sc
            delta RungeKutta4 0 = 0
            delta RungeKutta4 1 = spcDT sc / 2
            delta RungeKutta4 2 = spcDT sc / 2
            delta RungeKutta4 3 = spcDT sc
            delta RungeKutta4b 0 = 0
            delta RungeKutta4b 1 = spcDT sc / 3
            delta RungeKutta4b 2 = 2 * spcDT sc / 3
            delta RungeKutta4b 3 = spcDT sc

-- | Return the integration time values.
integTimes :: Specs -> [Double]
integTimes sc = map t [nl .. nu]
  where (nl, nu) = integIterationBnds sc
        t n = basicTime sc n 0

-- | Return the integration time points.
integPoints :: Run -> [Point]
integPoints r = points
  where sc = runSpecs r
        (nl, nu) = integIterationBnds sc
        points   = map point [nl .. nu]
        point n  = Point { pointSpecs = sc,
                           pointRun = r,
                           pointTime = basicTime sc n 0,
                           pointIteration = n,
                           pointPhase = 0 }

-- | Return the start time point.
integStartPoint :: Run -> Point
integStartPoint r = point nl
  where sc = runSpecs r
        (nl, nu) = integIterationBnds sc
        point n  = Point { pointSpecs = sc,
                           pointRun = r,
                           pointTime = basicTime sc n 0,
                           pointIteration = n,
                           pointPhase = 0 }

-- | Return the integration stop time point.
integStopPoint :: Run -> Point
integStopPoint r = point nu
  where sc = runSpecs r
        (nl, nu) = integIterationBnds sc
        point n  = Point { pointSpecs = sc,
                           pointRun = r,
                           pointTime = basicTime sc n 0,
                           pointIteration = n,
                           pointPhase = 0 }

-- | Return the simulation stop time point.
simulationStopPoint :: Run -> Point
simulationStopPoint r = pointAt r (spcStopTime $ runSpecs r)

-- | Return the point at the specified time.
pointAt :: Run -> Double -> Point
pointAt r t = p
  where sc = runSpecs r
        t0 = spcStartTime sc
        dt = spcDT sc
        n  = fromIntegral $ floor ((t - t0) / dt)
        p = Point { pointSpecs = sc,
                    pointRun = r,
                    pointTime = t,
                    pointIteration = n,
                    pointPhase = -1 }

-- | Return the integration time points startin from the specified iteration.
integPointsStartingFrom :: Point -> [Point]
integPointsStartingFrom p = points
  where r  = pointRun p
        sc = runSpecs r
        (nl, nu) = integIterationBnds sc
        n0       = if pointPhase p == 0
                   then pointIteration p
                   else pointIteration p + 1
        points   = map point [n0 .. nu]
        point n  = Point { pointSpecs = sc,
                           pointRun = r,
                           pointTime = basicTime sc n 0,
                           pointIteration = n,
                           pointPhase = 0 }

-- | Return the indexed time values in the grid by specified size.
timeGrid :: Specs -> Int -> [(Int, Double)]
timeGrid sc n =
  let t0 = spcStartTime sc
      t2 = spcStopTime sc
      n' = max (n - 1) 1
      dt = (t2 - t0) / (fromIntegral n')
      f i | i == 0    = (i, t0)
          | i == n'   = (i, t2)
          | otherwise = (i, t0 + (fromIntegral i) * dt)
  in map f [0 .. n']

-- | Delay the point by the specified positive number of iterations.
delayPoint :: Point -> Int -> Point
delayPoint p dn
  | dn <= 0   = error "Expected the positive number of iterations: delayPoint"
  | otherwise =
    let sc = pointSpecs p
        n  = pointIteration p
        ph = pointPhase p
    in if ph < 0
       then let t' = pointTime p - fromIntegral dn * spcDT sc
                n' = fromIntegral $ floor $ (t' - spcStartTime sc) / spcDT sc
            in p { pointTime = t',
                   pointIteration = n',
                   pointPhase = -1 }
       else let n' = n - dn
                t' = basicTime sc n' ph
            in p { pointTime = t',
                   pointIteration = n',
                   pointPhase = ph }