{-# LANGUAGE TypeFamilies #-}
module Simulation.Aivika.IO.Generator () where
import System.Random
import qualified System.Random.MWC as MWC
import Control.Monad
import Control.Monad.Trans
import Data.IORef
import Data.Vector
import Data.Functor
import Simulation.Aivika.Trans.Generator
import Simulation.Aivika.Trans.Generator.Primitive
instance MonadGenerator IO where
{-# SPECIALISE instance MonadGenerator IO #-}
data Generator IO =
Generator { Generator IO -> IO Double
generator01 :: IO Double,
Generator IO -> IO Double
generatorNormal01 :: IO Double,
Generator IO -> IO Int
generatorSequenceNo :: IO Int
}
{-# INLINE generateUniform #-}
generateUniform :: Generator IO -> Double -> Double -> IO Double
generateUniform = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> m Double
generateUniform01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generateUniformInt #-}
generateUniformInt :: Generator IO -> Int -> Int -> IO Int
generateUniformInt = forall (m :: * -> *). Monad m => m Double -> Int -> Int -> m Int
generateUniformInt01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generateTriangular #-}
generateTriangular :: Generator IO -> Double -> Double -> Double -> IO Double
generateTriangular = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> Double -> m Double
generateTriangular01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generateNormal #-}
generateNormal :: Generator IO -> Double -> Double -> IO Double
generateNormal = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> m Double
generateNormal01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generatorNormal01
{-# INLINE generateLogNormal #-}
generateLogNormal :: Generator IO -> Double -> Double -> IO Double
generateLogNormal = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> m Double
generateLogNormal01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generatorNormal01
{-# INLINE generateExponential #-}
generateExponential :: Generator IO -> Double -> IO Double
generateExponential = forall (m :: * -> *). Monad m => m Double -> Double -> m Double
generateExponential01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generateErlang #-}
generateErlang :: Generator IO -> Double -> Int -> IO Double
generateErlang = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Int -> m Double
generateErlang01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generatePoisson #-}
generatePoisson :: Generator IO -> Double -> IO Int
generatePoisson = forall (m :: * -> *). Monad m => m Double -> Double -> m Int
generatePoisson01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generateBinomial #-}
generateBinomial :: Generator IO -> Double -> Int -> IO Int
generateBinomial = forall (m :: * -> *). Monad m => m Double -> Double -> Int -> m Int
generateBinomial01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generateGamma #-}
generateGamma :: Generator IO -> Double -> Double -> IO Double
generateGamma Generator IO
g = forall (m :: * -> *).
Monad m =>
m Double -> m Double -> Double -> Double -> m Double
generateGamma01 (Generator IO -> IO Double
generatorNormal01 Generator IO
g) (Generator IO -> IO Double
generator01 Generator IO
g)
{-# INLINE generateBeta #-}
generateBeta :: Generator IO -> Double -> Double -> IO Double
generateBeta Generator IO
g = forall (m :: * -> *).
Monad m =>
m Double -> m Double -> Double -> Double -> m Double
generateBeta01 (Generator IO -> IO Double
generatorNormal01 Generator IO
g) (Generator IO -> IO Double
generator01 Generator IO
g)
{-# INLINE generateWeibull #-}
generateWeibull :: Generator IO -> Double -> Double -> IO Double
generateWeibull = forall (m :: * -> *).
Monad m =>
m Double -> Double -> Double -> m Double
generateWeibull01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generateDiscrete #-}
generateDiscrete :: forall a. Generator IO -> DiscretePDF a -> IO a
generateDiscrete = forall (m :: * -> *) a. Monad m => m Double -> DiscretePDF a -> m a
generateDiscrete01 forall b c a. (b -> c) -> (a -> b) -> a -> c
. Generator IO -> IO Double
generator01
{-# INLINE generateSequenceNo #-}
generateSequenceNo :: Generator IO -> IO Int
generateSequenceNo = Generator IO -> IO Int
generatorSequenceNo
{-# INLINABLE newGenerator #-}
newGenerator :: GeneratorType IO -> IO (Generator IO)
newGenerator GeneratorType IO
tp =
case GeneratorType IO
tp of
GeneratorType IO
SimpleGenerator ->
forall a (m :: * -> *).
(Variate a, PrimMonad m) =>
Gen (PrimState m) -> m a
MWC.uniform forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> IO GenIO
MWC.createSystemRandom forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *).
MonadGenerator m =>
m Double -> m (Generator m)
newRandomGenerator01
SimpleGeneratorWithSeed Word32
x ->
forall a (m :: * -> *).
(Variate a, PrimMonad m) =>
Gen (PrimState m) -> m a
MWC.uniform forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) (v :: * -> *).
(PrimMonad m, Vector v Word32) =>
v Word32 -> m (Gen (PrimState m))
MWC.initialize (forall a. a -> Vector a
singleton Word32
x) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *).
MonadGenerator m =>
m Double -> m (Generator m)
newRandomGenerator01
CustomGenerator IO (Generator IO)
g ->
IO (Generator IO)
g
CustomGenerator01 IO Double
g ->
forall (m :: * -> *).
MonadGenerator m =>
m Double -> m (Generator m)
newRandomGenerator01 IO Double
g
{-# INLINABLE newRandomGenerator #-}
newRandomGenerator :: forall g. RandomGen g => g -> IO (Generator IO)
newRandomGenerator g
g =
do IORef g
r <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef g
g
let g01 :: IO Double
g01 = do g
g <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef g
r
let (Double
x, g
g') = forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef g
r g
g'
forall (m :: * -> *) a. Monad m => a -> m a
return Double
x
forall (m :: * -> *).
MonadGenerator m =>
m Double -> m (Generator m)
newRandomGenerator01 IO Double
g01
{-# INLINABLE newRandomGenerator01 #-}
newRandomGenerator01 :: IO Double -> IO (Generator IO)
newRandomGenerator01 IO Double
g01 =
do IO Double
gNormal01 <- forall (m :: * -> *). MonadIO m => m Double -> m (m Double)
newNormalGenerator01 IO Double
g01
IORef Int
gSeqNoRef <- forall a. a -> IO (IORef a)
newIORef Int
0
let gSeqNo :: IO Int
gSeqNo = do { Int
x <- forall a. IORef a -> IO a
readIORef IORef Int
gSeqNoRef; forall a. IORef a -> (a -> a) -> IO ()
modifyIORef' IORef Int
gSeqNoRef (forall a. Num a => a -> a -> a
+Int
1); forall (m :: * -> *) a. Monad m => a -> m a
return Int
x }
forall (m :: * -> *) a. Monad m => a -> m a
return Generator { generator01 :: IO Double
generator01 = IO Double
g01,
generatorNormal01 :: IO Double
generatorNormal01 = IO Double
gNormal01,
generatorSequenceNo :: IO Int
generatorSequenceNo = IO Int
gSeqNo }
newNormalGenerator01 :: MonadIO m
=> m Double
-> m (m Double)
{-# INLINABLE newNormalGenerator01 #-}
newNormalGenerator01 :: forall (m :: * -> *). MonadIO m => m Double -> m (m Double)
newNormalGenerator01 m Double
g =
do IORef Double
nextRef <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Double
0.0
IORef Bool
flagRef <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Bool
False
IORef Double
xi1Ref <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Double
0.0
IORef Double
xi2Ref <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Double
0.0
IORef Double
psiRef <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. a -> IO (IORef a)
newIORef Double
0.0
let loop :: m ()
loop =
do Double
psi <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
psiRef
if (Double
psi forall a. Ord a => a -> a -> Bool
>= Double
1.0) Bool -> Bool -> Bool
|| (Double
psi forall a. Eq a => a -> a -> Bool
== Double
0.0)
then do Double
g1 <- m Double
g
Double
g2 <- m Double
g
let xi1 :: Double
xi1 = Double
2.0 forall a. Num a => a -> a -> a
* Double
g1 forall a. Num a => a -> a -> a
- Double
1.0
xi2 :: Double
xi2 = Double
2.0 forall a. Num a => a -> a -> a
* Double
g2 forall a. Num a => a -> a -> a
- Double
1.0
psi :: Double
psi = Double
xi1 forall a. Num a => a -> a -> a
* Double
xi1 forall a. Num a => a -> a -> a
+ Double
xi2 forall a. Num a => a -> a -> a
* Double
xi2
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
xi1Ref Double
xi1
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
xi2Ref Double
xi2
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
psiRef Double
psi
m ()
loop
else forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
psiRef forall a b. (a -> b) -> a -> b
$ forall a. Floating a => a -> a
sqrt (- Double
2.0 forall a. Num a => a -> a -> a
* forall a. Floating a => a -> a
log Double
psi forall a. Fractional a => a -> a -> a
/ Double
psi)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$
do Bool
flag <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Bool
flagRef
if Bool
flag
then do forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Bool
flagRef Bool
False
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
nextRef
else do forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
xi1Ref Double
0.0
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
xi2Ref Double
0.0
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
psiRef Double
0.0
m ()
loop
Double
xi1 <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
xi1Ref
Double
xi2 <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
xi2Ref
Double
psi <- forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> IO a
readIORef IORef Double
psiRef
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Bool
flagRef Bool
True
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO forall a b. (a -> b) -> a -> b
$ forall a. IORef a -> a -> IO ()
writeIORef IORef Double
nextRef forall a b. (a -> b) -> a -> b
$ Double
xi2 forall a. Num a => a -> a -> a
* Double
psi
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Double
xi1 forall a. Num a => a -> a -> a
* Double
psi