algebra-4.3.1: Constructive abstract algebra

Safe HaskellSafe
LanguageHaskell98

Numeric.Coalgebra.Incidence

Synopsis

Documentation

data Interval' a Source #

the dual incidence algebra basis

Constructors

Interval' a a 

Instances

(Eq a, Commutative r, Monoidal r, Semiring r) => Coalgebra r (Interval' a) Source # 

Methods

comult :: (Interval' a -> r) -> Interval' a -> Interval' a -> r Source #

(Eq a, Bounded a, Commutative r, Monoidal r, Semiring r) => CounitalCoalgebra r (Interval' a) Source # 

Methods

counit :: (Interval' a -> r) -> r Source #

Eq a => Eq (Interval' a) Source # 

Methods

(==) :: Interval' a -> Interval' a -> Bool #

(/=) :: Interval' a -> Interval' a -> Bool #

Data a => Data (Interval' a) Source # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Interval' a -> c (Interval' a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Interval' a) #

toConstr :: Interval' a -> Constr #

dataTypeOf :: Interval' a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Interval' a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Interval' a)) #

gmapT :: (forall b. Data b => b -> b) -> Interval' a -> Interval' a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Interval' a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Interval' a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Interval' a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Interval' a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Interval' a -> m (Interval' a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Interval' a -> m (Interval' a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Interval' a -> m (Interval' a) #

Ord a => Ord (Interval' a) Source # 
Read a => Read (Interval' a) Source # 
Show a => Show (Interval' a) Source # 

zeta' :: Unital r => Interval' a -> r Source #