algebra-4.3.1: Constructive abstract algebra

Safe HaskellNone
LanguageHaskell98

Numeric.Decidable.Nilpotent

Synopsis

Documentation

class (Monoidal r, Multiplicative r) => DecidableNilpotent r where Source #

An element x is nilpotent if there exists n s.t. pow1p x n is zero.

Minimal complete definition

isNilpotent

Methods

isNilpotent :: r -> Bool Source #

Instances

DecidableNilpotent Bool Source # 
DecidableNilpotent Int Source # 

Methods

isNilpotent :: Int -> Bool Source #

DecidableNilpotent Int8 Source # 
DecidableNilpotent Int16 Source # 
DecidableNilpotent Int32 Source # 
DecidableNilpotent Int64 Source # 
DecidableNilpotent Integer Source # 
DecidableNilpotent Natural Source # 
DecidableNilpotent Word8 Source # 
DecidableNilpotent Word16 Source # 
DecidableNilpotent Word32 Source # 
DecidableNilpotent Word64 Source # 
DecidableNilpotent () Source # 

Methods

isNilpotent :: () -> Bool Source #

(DecidableNilpotent a, DecidableNilpotent b) => DecidableNilpotent (a, b) Source # 

Methods

isNilpotent :: (a, b) -> Bool Source #

(DecidableNilpotent a, DecidableNilpotent b, DecidableNilpotent c) => DecidableNilpotent (a, b, c) Source # 

Methods

isNilpotent :: (a, b, c) -> Bool Source #

(DecidableNilpotent a, DecidableNilpotent b, DecidableNilpotent c, DecidableNilpotent d) => DecidableNilpotent (a, b, c, d) Source # 

Methods

isNilpotent :: (a, b, c, d) -> Bool Source #

(DecidableNilpotent a, DecidableNilpotent b, DecidableNilpotent c, DecidableNilpotent d, DecidableNilpotent e) => DecidableNilpotent (a, b, c, d, e) Source # 

Methods

isNilpotent :: (a, b, c, d, e) -> Bool Source #