algebra-4.3.1: Constructive abstract algebra

Safe HaskellNone
LanguageHaskell98

Numeric.Module.Representable

Contents

Synopsis

Representable Additive

addRep :: (Applicative m, Additive r) => m r -> m r -> m r Source #

`Additive.(+)` default definition

sinnum1pRep :: (Functor m, Additive r) => Natural -> m r -> m r Source #

sinnum1p default definition

Representable Monoidal

zeroRep :: (Applicative m, Monoidal r) => m r Source #

zero default definition

sinnumRep :: (Functor m, Monoidal r) => Natural -> m r -> m r Source #

sinnum default definition

Representable Group

negateRep :: (Functor m, Group r) => m r -> m r Source #

negate default definition

minusRep :: (Applicative m, Group r) => m r -> m r -> m r Source #

`Group.(-)` default definition

subtractRep :: (Applicative m, Group r) => m r -> m r -> m r Source #

subtract default definition

timesRep :: (Integral n, Functor m, Group r) => n -> m r -> m r Source #

times default definition

Representable Multiplicative (via Algebra)

mulRep :: (Representable m, Algebra r (Rep m)) => m r -> m r -> m r Source #

`Multiplicative.(*)` default definition

Representable Unital (via UnitalAlgebra)

oneRep :: (Representable m, Unital r, UnitalAlgebra r (Rep m)) => m r Source #

one default definition

Representable Rig (via Algebra)

fromNaturalRep :: (UnitalAlgebra r (Rep m), Representable m, Rig r) => Natural -> m r Source #

fromNatural default definition

Representable Ring (via Algebra)

fromIntegerRep :: (UnitalAlgebra r (Rep m), Representable m, Ring r) => Integer -> m r Source #

fromInteger default definition