Safe Haskell | Safe |
---|---|
Language | Haskell98 |
- class Additive r where
- sum1 :: (Foldable1 f, Additive r) => f r -> r
- class Additive r => Abelian r
- class Additive r => Idempotent r
- sinnum1pIdempotent :: Natural -> r -> r
- class Additive m => Partitionable m where
Additive Semigroups
class Additive r where Source #
(a + b) + c = a + (b + c) sinnum 1 a = a sinnum (2 * n) a = sinnum n a + sinnum n a sinnum (2 * n + 1) a = sinnum n a + sinnum n a + a
(+) :: r -> r -> r infixl 6 Source #
sinnum1p :: Natural -> r -> r Source #
sinnum1p n r = sinnum (1 + n) r
Additive Abelian semigroups
class Additive r => Abelian r Source #
an additive abelian semigroup
a + b = b + a
Additive Monoids
class Additive r => Idempotent r Source #
An additive semigroup with idempotent addition.
a + a = a
Idempotent Bool Source # | |
Idempotent () Source # | |
Idempotent r => Idempotent (ZeroRng r) Source # | |
Idempotent r => Idempotent (Opposite r) Source # | |
Band r => Idempotent (Log r) Source # | |
Idempotent r => Idempotent (Trig r) Source # | |
Idempotent r => Idempotent (Quaternion' r) Source # | |
Idempotent r => Idempotent (Hyper r) Source # | |
Idempotent r => Idempotent (Dual' r) Source # | |
Idempotent r => Idempotent (Quaternion r) Source # | |
Idempotent r => Idempotent (Hyper' r) Source # | |
Idempotent r => Idempotent (Dual r) Source # | |
Idempotent r => Idempotent (Complex r) Source # | |
Idempotent r => Idempotent (e -> r) Source # | |
(Idempotent a, Idempotent b) => Idempotent (a, b) Source # | |
Idempotent r => Idempotent (Covector r a) Source # | |
(Idempotent a, Idempotent b, Idempotent c) => Idempotent (a, b, c) Source # | |
(Idempotent a, Idempotent b, Idempotent c, Idempotent d) => Idempotent (a, b, c, d) Source # | |
(Idempotent a, Idempotent b, Idempotent c, Idempotent d, Idempotent e) => Idempotent (a, b, c, d, e) Source # | |
sinnum1pIdempotent :: Natural -> r -> r Source #
Partitionable semigroups
class Additive m => Partitionable m where Source #
partitionWith :: (m -> m -> r) -> m -> NonEmpty r Source #
partitionWith f c returns a list containing f a b for each a b such that a + b = c,
Partitionable Bool Source # | |
Partitionable Natural Source # | |
Partitionable () Source # | |
Factorable r => Partitionable (Log r) Source # | |
Partitionable r => Partitionable (Trig r) Source # | |
Partitionable r => Partitionable (Quaternion' r) Source # | |
Partitionable r => Partitionable (Hyper r) Source # | |
Partitionable r => Partitionable (Dual' r) Source # | |
Partitionable r => Partitionable (Quaternion r) Source # | |
Partitionable r => Partitionable (Hyper' r) Source # | |
Partitionable r => Partitionable (Dual r) Source # | |
Partitionable r => Partitionable (Complex r) Source # | |
(Partitionable a, Partitionable b) => Partitionable (a, b) Source # | |
(Partitionable a, Partitionable b, Partitionable c) => Partitionable (a, b, c) Source # | |
(Partitionable a, Partitionable b, Partitionable c, Partitionable d) => Partitionable (a, b, c, d) Source # | |
(Partitionable a, Partitionable b, Partitionable c, Partitionable d, Partitionable e) => Partitionable (a, b, c, d, e) Source # | |