-- | -- Module : Data.Allen -- Description : Main module for Allen's interval algebra. -- Maintainer : Archaversine -- -- This module provides a monad for computing with Allen's interval algebra. -- The monad keeps track of the interval graph that is being built up during -- the computation. The interval graph is represented as a map from interval -- identifiers to intervals. -- -- = Intervals -- Intervals can be created using the 'interval' function: -- -- @ -- calc :: 'Allen' () -- calc = do -- sleeps <- 'interval' -- snores <- 'interval' -- wakeup <- 'interval' -- ... -- @ -- -- == Retrieving interval data -- Most functions perform operations on intervals solely with the use of their -- IDs. However, sometimes it is useful to retrieve the actual interval data. -- To get the actual interval data, use the 'fromID' function: -- -- @ -- calc :: Allen () -- calc = do -- sleeps <- 'interval' -- sleepsInterval <- 'fromID' sleeps -- ... -- @ -- -- Note that in the above example, updating the interval @sleeps@ will not -- update the interval @sleepsInterval@. -- -- == Combining calculations -- Sometimes, it is useful to define a set of intervals in one place and use -- then repeatedly in other places. Here is an example that reuses the intervals -- @a@ and @b@: -- -- @ -- network :: 'Allen' ('IntervalID', 'IntervalID') -- network = do -- a <- 'interval' -- b <- 'interval' -- -- 'assume' a 'During' b -- -- return (a, b) -- -- calc1 :: 'Allen' () -- calc1 = do -- (a, b) <- network -- c <- 'interval' -- -- 'assume' a 'Precedes' c -- ... -- -- calc2 :: 'Allen' () -- calc2 = do -- (a, b) <- network -- c <- 'interval' -- -- 'assume' a 'Contains' c -- ... -- @ -- -- = Relations -- Intervals can have relations with one another. For example, in the above -- example a valid relation would be that one sleeps during snores. Adding -- relations is done using one of the assume functions: -- -- @ -- calc :: Allen () -- calc = do -- sleeps <- 'interval' -- snores <- 'interval' -- wakeup <- 'interval' -- -- 'assume' snores 'During' sleeps -- 'assume' wakeup 'PrecededBy' sleeps -- @ -- -- Sometimes, intervals have more than one possible relation with one another. -- For example, snores is 'During' sleeps, but it could also be 'StartedBy' sleeps, -- or it could 'Equals' sleeps. In such cases, the 'assumeSet' function can be -- used: -- -- @ -- calc :: 'Allen' () -- calc = do -- sleeps <- 'interval' -- snores <- 'interval' -- wakeup <- 'interval' -- -- 'assumeSet' snores ['During', 'StartedBy', 'Equals'] sleeps -- @ -- -- There are thirteen different relations intervals can have with each other. -- They are identified with the 'Relation' type. module Data.Allen ( module Data.Allen.Types , module Data.Allen.Interval , module Data.Allen.Relation , execAllen , evalAllen , runAllen ) where import Control.Monad.State import Data.Allen.Types import Data.Allen.Interval import Data.Allen.Relation import qualified Data.Map.Strict as Map -- | Return the resulting interval graph of an allen computation execAllen :: Allen a -> IntervalGraph execAllen :: forall a. Allen a -> IntervalGraph execAllen = forall a b. (a, b) -> b snd forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a. Allen a -> (a, IntervalGraph) runAllen -- | Return the result of an allen computation evalAllen :: Allen a -> a evalAllen :: forall a. Allen a -> a evalAllen = forall a b. (a, b) -> a fst forall b c a. (b -> c) -> (a -> b) -> a -> c . forall a. Allen a -> (a, IntervalGraph) runAllen -- | Return the result of an allen computation and the resulting interval graph runAllen :: Allen a -> (a, IntervalGraph) runAllen :: forall a. Allen a -> (a, IntervalGraph) runAllen = forall a b c. (a -> b -> c) -> b -> a -> c flip forall s a. State s a -> s -> (a, s) runState forall k a. Map k a Map.empty