Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- (.) :: (b -> c) -> (a -> b) -> a -> c
- const :: a -> b -> a
- id :: a -> a
- outl :: (a, b) -> a
- outr :: (a, b) -> b
- swap :: (a, b) -> (b, a)
- assocl :: (a, (b, c)) -> ((a, b), c)
- assocr :: ((a, b), c) -> (a, (b, c))
- dupl :: (a, (b, c)) -> ((a, b), (a, c))
- dupr :: ((a, b), c) -> ((a, c), (b, c))
- pair :: (a -> b, a -> c) -> a -> (b, c)
- cross :: (a -> c, b -> d) -> (a, b) -> (c, d)
- cond :: (a -> Bool) -> (a -> b, a -> b) -> a -> b
- curry :: ((a, b) -> c) -> a -> b -> c
- uncurry :: (a -> b -> c) -> (a, b) -> c
- false :: a -> Bool
- true :: a -> Bool
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- otherwise :: Bool
- leq :: Ord a => (a, a) -> Bool
- less :: Ord a => (a, a) -> Bool
- eql :: Ord a => (a, a) -> Bool
- neq :: Ord a => (a, a) -> Bool
- gtr :: Ord a => (a, a) -> Bool
- geq :: Ord a => (a, a) -> Bool
- meet :: (a -> Bool, a -> Bool) -> a -> Bool
- join :: (a -> Bool, a -> Bool) -> a -> Bool
- wok :: ((b, a) -> c) -> (a, b) -> c
- zero :: Num a => t -> a
- succ :: Num a => a -> a
- pred :: Num a => a -> a
- plus :: Num a => (a, a) -> a
- minus :: Num a => (a, a) -> a
- times :: Num a => (a, a) -> a
- divide :: Fractional a => (a, a) -> a
- negative :: (Ord a, Num a) => a -> Bool
- positive :: (Ord a, Num a) => a -> Bool
- (++) :: [a] -> [a] -> [a]
- null :: [a] -> Bool
- nil :: t -> [a]
- wrap :: a -> [a]
- cons :: (a, [a]) -> [a]
- cat :: ([a], [a]) -> [a]
- concat :: [[a]] -> [a]
- snoc :: ([a], a) -> [a]
- head :: [a] -> a
- tail :: [a] -> [a]
- split :: [a] -> (a, [a])
- last :: [a] -> a
- init :: [a] -> [a]
- inits :: [a] -> [[a]]
- tails :: [a] -> [[a]]
- splits :: [a] -> [([a], [a])]
- cpp :: ([a], [b]) -> [(a, b)]
- cpl :: ([a], b) -> [(a, b)]
- cpr :: (a, [b]) -> [(a, b)]
- cplist :: [[a]] -> [[a]]
- minlist :: ((a, a) -> Bool) -> [a] -> a
- bmin :: ((a, a) -> Bool) -> (a, a) -> a
- maxlist :: ((a, a) -> Bool) -> [a] -> a
- bmax :: ((a, a) -> Bool) -> (a, a) -> a
- thinlist :: ((a, a) -> Bool) -> [a] -> [a]
- length :: Num a => [t] -> a
- sum :: Num a => [a] -> a
- trans :: [[a]] -> [[a]]
- list :: (a -> b) -> [a] -> [b]
- filter :: (a -> Bool) -> [a] -> [a]
- catalist :: (b, (a, b) -> b) -> [a] -> b
- cata1list :: (a -> b, (a, b) -> b) -> [a] -> b
- cata2list :: ((a, a) -> b, (a, b) -> b) -> [a] -> b
- loop :: ((a, b) -> a) -> (a, [b]) -> a
- merge :: ((a, a) -> Bool) -> ([a], [a]) -> [a]
- zip :: ([a], [b]) -> [(a, b)]
- unzip :: [(a, b)] -> ([a], [b])
- words :: String -> [String]
- lines :: String -> [String]
- unwords :: [String] -> String
- unlines :: [String] -> String
- ord :: Char -> Int
- chr :: Int -> Char
- (==) :: Eq a => a -> a -> Bool
- (/=) :: Eq a => a -> a -> Bool
- (<=) :: Ord a => a -> a -> Bool
- (<) :: Ord a => a -> a -> Bool
- (>=) :: Ord a => a -> a -> Bool
- (>) :: Ord a => a -> a -> Bool
- (+) :: Num a => a -> a -> a
- (-) :: Num a => a -> a -> a
- (/) :: Fractional a => a -> a -> a
- div :: Integral a => a -> a -> a
- mod :: Integral a => a -> a -> a
- (*) :: Num a => a -> a -> a
- negate :: Num a => a -> a
- primPrint :: Show a => a -> IO ()
- strict :: (a -> b) -> a -> b
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- show :: Show a => a -> String
- flip :: (a -> b -> c) -> b -> a -> c
- type String = [Char]
- class Eq a
- class Eq a => Ord a
- class Num a
- class Num a => Fractional a
- class Show a
- data Integer
- data Natural
- module GHC.Types
Documentation
divide :: Fractional a => (a, a) -> a Source #
(/) :: Fractional a => a -> a -> a infixl 7 #
Fractional division.
mod :: Integral a => a -> a -> a infixl 7 #
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a #
error
stops execution and displays an error message.
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, instances are
encouraged to follow these properties:
Instances
Eq SrcLoc | Since: base-4.9.0.0 |
Eq Module | |
Eq Ordering | |
Eq TrName | |
Eq TyCon | |
Eq Integer | |
Eq Natural | |
Eq () | |
Eq Bool | |
Eq Char | |
Eq Double | Note that due to the presence of
Also note that
|
Eq Float | Note that due to the presence of
Also note that
|
Eq Int | |
Eq Word | |
Eq a => Eq (Ratio a) | Since: base-2.1 |
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Eq a => Eq (a) | |
Eq a => Eq [a] | |
(Eq a, Eq b) => Eq (a, b) | |
(Eq a, Eq b, Eq c) => Eq (a, b, c) | |
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
Ord
, as defined by the Haskell report, implements a total order and has the
following properties:
- Comparability
x <= y || y <= x
=True
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
The following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Note that (7.) and (8.) do not require min
and max
to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==)
.
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Instances
Ord Ordering | |
Defined in GHC.Classes | |
Ord TyCon | |
Ord Integer | |
Ord Natural | |
Ord () | |
Ord Bool | |
Ord Char | |
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Ord Int | |
Ord Word | |
Integral a => Ord (Ratio a) | Since: base-2.0.1 |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Ord a => Ord (a) | |
Ord a => Ord [a] | |
(Ord a, Ord b) => Ord (a, b) | |
(Ord a, Ord b, Ord c) => Ord (a, b, c) | |
Defined in GHC.Classes | |
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # |
Basic numeric class.
The Haskell Report defines no laws for Num
. However, (
and +
)(
are
customarily expected to define a ring and have the following properties:*
)
- Associativity of
(
+
) (x + y) + z
=x + (y + z)
- Commutativity of
(
+
) x + y
=y + x
is the additive identityfromInteger
0x + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of
(
*
) (x * y) * z
=x * (y * z)
is the multiplicative identityfromInteger
1x * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of
(
with respect to*
)(
+
) a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
class Num a => Fractional a #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, (
and
+
)(
are customarily expected to define a division ring and have the
following properties:*
)
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
fromRational, (recip | (/))
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Instances
Show FractionalExponentBase | |
Defined in GHC.Real showsPrec :: Int -> FractionalExponentBase -> ShowS # show :: FractionalExponentBase -> String # showList :: [FractionalExponentBase] -> ShowS # | |
Show CallStack | Since: base-4.9.0.0 |
Show SrcLoc | Since: base-4.9.0.0 |
Show KindRep | |
Show Module | Since: base-4.9.0.0 |
Show Ordering | Since: base-2.1 |
Show TrName | Since: base-4.9.0.0 |
Show TyCon | Since: base-2.1 |
Show TypeLitSort | Since: base-4.11.0.0 |
Defined in GHC.Show showsPrec :: Int -> TypeLitSort -> ShowS # show :: TypeLitSort -> String # showList :: [TypeLitSort] -> ShowS # | |
Show Integer | Since: base-2.1 |
Show Natural | Since: base-4.8.0.0 |
Show () | Since: base-2.1 |
Show Bool | Since: base-2.1 |
Show Char | Since: base-2.1 |
Show Int | Since: base-2.1 |
Show Levity | Since: base-4.15.0.0 |
Show RuntimeRep | Since: base-4.11.0.0 |
Defined in GHC.Show showsPrec :: Int -> RuntimeRep -> ShowS # show :: RuntimeRep -> String # showList :: [RuntimeRep] -> ShowS # | |
Show VecCount | Since: base-4.11.0.0 |
Show VecElem | Since: base-4.11.0.0 |
Show Word | Since: base-2.1 |
Show a => Show (Ratio a) | Since: base-2.0.1 |
Show a => Show (NonEmpty a) | Since: base-4.11.0.0 |
Show a => Show (Maybe a) | Since: base-2.1 |
Show a => Show (a) | Since: base-4.15 |
Show a => Show [a] | Since: base-2.1 |
(Show a, Show b) => Show (a, b) | Since: base-2.1 |
(Show a, Show b, Show c) => Show (a, b, c) | Since: base-2.1 |
(Show a, Show b, Show c, Show d) => Show (a, b, c, d) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int
, the Integer
type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int
), IS
constructor is used.
Otherwise Integer
and IN
constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Invariant: Integer
and IN
are used iff value doesn't fit in IS
Natural number
Invariant: numbers <= 0xffffffffffffffff use the NS
constructor
Instances
Num Natural | Note that Since: base-4.8.0.0 |
Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real toRational :: Natural -> Rational # | |
Show Natural | Since: base-4.8.0.0 |
Eq Natural | |
Ord Natural | |
module GHC.Types