{-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} -------------------------------------------------------------------------------- -- | -- Module : ArrayFire.Statistics -- Copyright : David Johnson (c) 2019-2020 -- License : BSD3 -- Maintainer : David Johnson <djohnson.m@gmail.com> -- Stability : Experimental -- Portability : GHC -- -- Statistics API. -- Example of finding the top k elements along with their indices from an 'Array' -- -- @ -- >>> let (vals,indexes) = 'topk' ( 'vector' \@'Double' 10 [1..] ) 3 'TopKDefault' -- >>> print vals -- >>> print indexes -- @ -- @ -- ArrayFire 'Array' -- [3 1 1 1] -- 10.0000 9.0000 8.0000 -- @ -- @ -- ArrayFire 'Array' -- [3 1 1 1] -- 9 8 7 -- @ -------------------------------------------------------------------------------- module ArrayFire.Statistics where import ArrayFire.Array import ArrayFire.FFI import ArrayFire.Internal.Statistics import ArrayFire.Internal.Types -- | Calculates 'mean' of 'Array' along user-specified dimension. -- -- >>> mean ( vector @Int 10 [1..] ) 0 -- ArrayFire Array -- [1 1 1 1] -- 5.5000 mean :: AFType a => Array a -- ^ Input 'Array' -> Int -- ^ The dimension along which the mean is extracted -> Array a -- ^ Will contain the mean of the input 'Array' along dimension dim mean a n = a `op1` (\x y -> af_mean x y (fromIntegral n)) -- | Calculates 'meanWeighted' of 'Array' along user-specified dimension. -- -- >>> meanWeighted (vector @Double 10 [1..10]) (vector @Double 10 [1..10]) 0 -- ArrayFire Array -- [1 1 1 1] -- 7.0000 meanWeighted :: AFType a => Array a -- ^ Input 'Array' -> Array a -- ^ Weights 'Array' -> Int -- ^ The dimension along which the mean is extracted -> Array a -- ^ Will contain the mean of the input 'Array' along dimension dim meanWeighted x y (fromIntegral -> n) = op2 x y $ \a b c -> af_mean_weighted a b c n -- | Calculates /variance/ of 'Array' along user-specified dimension. -- -- >>> var (vector @Double 8 [1..8]) False 0 -- ArrayFire Array -- [1 1 1 1] -- 6.0 var :: AFType a => Array a -- ^ Input 'Array' -> Bool -- ^ boolean denoting Population variance (false) or Sample Variance (true) -> Int -- ^ The dimension along which the variance is extracted -> Array a -- ^ will contain the variance of the input array along dimension dim var arr (fromIntegral . fromEnum -> b) d = arr `op1` (\p x -> af_var p x b (fromIntegral d)) -- | Calculates 'varWeighted' of 'Array' along user-specified dimension. -- -- >>> varWeighted ( vector @Int 10 [1..] ) ( vector @Int 10 [1..] ) 0 -- ArrayFire Array -- [1 1 1 1] -- 5.5000 varWeighted :: AFType a => Array a -- ^ Input 'Array' -> Array a -- ^ Weights 'Array' used to scale input in before getting variance -> Int -- ^ The dimension along which the variance is extracted -> Array a -- ^ Contains the variance of the input array along dimension dim varWeighted x y (fromIntegral -> n) = op2 x y $ \a b c -> af_var_weighted a b c n -- | Calculates 'stdev' of 'Array' along user-specified dimension. -- -- >>> stdev (vector @Double 10 (cycle [1,-1])) 0 -- ArrayFire Array -- [1 1 1 1] -- 1.0 stdev :: AFType a => Array a -- ^ Input 'Array' -> Int -- ^ The dimension along which the standard deviation is extracted -> Array a -- ^ Contains the standard deviation of the input array along dimension dim stdev a n = a `op1` (\x y -> af_stdev x y (fromIntegral n)) -- | Calculates /covariance/ of two 'Array's with a bias specifier. -- -- >>> cov (vector @Double 10 (repeat 1)) (vector @Double 10 (repeat 1)) False -- ArrayFire Array -- [1 1 1 1] -- 0.0 cov :: AFType a => Array a -- ^ First input 'Array' -> Array a -- ^ Second input 'Array' -> Bool -- ^ A boolean specifying if biased estimate should be taken (default: 'False') -> Array a -- ^ Contains will the covariance of the input 'Array's cov x y (fromIntegral . fromEnum -> n) = op2 x y $ \a b c -> af_cov a b c n -- | Calculates 'median' of 'Array' along user-specified dimension. -- -- >>> print $ median ( vector @Int 10 [1..] ) 0 -- ArrayFire Array -- [1 1 1 1] -- 5.5000 median :: AFType a => Array a -- ^ Input 'Array' -> Int -- ^ Dimension along which to calculate 'median' -> Array a -- ^ Array containing 'median' median a n = a `op1` (\x y -> af_median x y (fromIntegral n)) -- | Calculates 'mean' of all elements in an 'Array' -- -- >>> fst (meanAll (matrix @Double (2,2) (repeat 10))) -- 10.0 meanAll :: AFType a => Array a -- ^ Input 'Array' -> (Double, Double) -- ^ Mean result (real and imaginary part) meanAll = (`infoFromArray2` af_mean_all) -- | Calculates weighted mean of all elements in an 'Array' -- -- >>> print $ fst (meanAllWeighted (matrix @Double (2,2) (repeat 10)) (matrix @Double (2,2) (repeat 0))) -- 10 meanAllWeighted :: AFType a => Array a -- ^ Input 'Array' -> Array a -- ^ 'Array' of weights -> (Double, Double) -- ^ Weighted mean (real and imaginary part) meanAllWeighted a b = infoFromArray22 a b af_mean_all_weighted -- | Calculates variance of all elements in an 'Array' -- -- >>> fst (varAll (vector @Double 10 (repeat 10)) False) -- 0 varAll :: AFType a => Array a -- ^ Input 'Array' -> Bool -- ^ Input 'Array' -> (Double, Double) -- ^ Variance (real and imaginary part) varAll a (fromIntegral . fromEnum -> b) = infoFromArray2 a $ \x y z -> af_var_all x y z b -- | Calculates weighted variance of all elements in an 'Array' -- -- >>> varAllWeighted ( vector @Int 10 [1..] ) ( vector @Int 10 [1..] ) -- 0 varAllWeighted :: AFType a => Array a -- ^ Input 'Array' -> Array a -- ^ 'Array' of weights -> (Double, Double) -- ^ Variance weighted result, (real and imaginary part) varAllWeighted a b = infoFromArray22 a b af_var_all_weighted -- | Calculates standard deviation of all elements in an 'Array' -- -- >>> fst (stdevAll (vector @Double 10 (repeat 10))) -- 10 stdevAll :: AFType a => Array a -- ^ Input 'Array' -> (Double, Double) -- ^ Standard deviation result, (real and imaginary part) stdevAll = (`infoFromArray2` af_stdev_all) -- | Calculates median of all elements in an 'Array' -- -- >>> fst (medianAll (vector @Double 10 (repeat 10))) -- 10 medianAll :: (AFType a, Fractional a) => Array a -- ^ Input 'Array' -> (Double, Double) -- ^ Median result, real and imaginary part medianAll = (`infoFromArray2` af_median_all) -- | This algorithm returns Pearson product-moment correlation coefficient. -- <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient> -- -- >>> fst (corrCoef ( vector @Int 10 [1..] ) ( vector @Int 10 [10,9..] )) -- -1 corrCoef :: AFType a => Array a -- ^ First input 'Array' -> Array a -- ^ Second input 'Array' -> (Double, Double) -- ^ Correlation coefficient result, real and imaginary part corrCoef a b = infoFromArray22 a b af_corrcoef -- | This function returns the top k values along a given dimension of the input array. -- -- @ -- >>> let (vals,indexes) = 'topk' ( 'vector' \@'Double' 10 [1..] ) 3 'TopKDefault' -- >>> print indexes -- -- ArrayFire 'Array' -- [3 1 1 1] -- 10.0000 9.0000 8.0000 -- -- >>> print vals -- ArrayFire 'Array' -- [3 1 1 1] -- 9 8 7 -- @ -- -- The indices along with their values are returned. If the input is a multi-dimensional array, the indices will be the index of the value in that dimension. Order of duplicate values are not preserved. This function is optimized for small values of k. -- This function performs the operation across all dimensions of the input array. -- This function is optimized for small values of k. -- The order of the returned keys may not be in the same order as the appear in the input array -- topk :: AFType a => Array a -- ^ First input 'Array', with at least /k/ elements along /dim/ -> Int -- ^ The number of elements to be retrieved along the dim dimension -> TopK -- ^ If descending, the highest values are returned. Otherwise, the lowest values are returned -> (Array a, Array a) -- ^ Returns The values of the top k elements along the dim dimension -- along with the indices of the top k elements along the dim dimension topk a (fromIntegral -> x) (fromTopK -> f) = a `op2p` (\b c d -> af_topk b c d x 0 f)