{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeSynonymInstances #-}
module Data.Avro.Encode
(
getSchema
, encodeAvro
, encodeContainer
, newSyncBytes
, encodeContainerWithSync
, containerHeaderWithSync
, packContainerBlocks
, packContainerBlocksWithSync
, packContainerValues
, packContainerValuesWithSync
, EncodeAvro(..)
, Zag(..)
, putAvro
) where
import qualified Data.Aeson as A
import qualified Data.Array as Ar
import qualified Data.Binary.IEEE754 as IEEE
import Data.Bits
import qualified Data.ByteString as B
import Data.ByteString.Builder
import Data.ByteString.Lazy as BL
import Data.ByteString.Lazy.Char8 ()
import qualified Data.Foldable as F
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.Int
import Data.Ix (Ix)
import Data.List as DL
import Data.List.NonEmpty (NonEmpty (..))
import qualified Data.List.NonEmpty as NE
import Data.Maybe (catMaybes, mapMaybe)
import Data.Monoid
import Data.Proxy
import qualified Data.Set as S
import Data.Text (Text)
import qualified Data.Text as T
import qualified Data.Text.Encoding as T
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.Encoding as TL
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as U
import Data.Word
import System.Random.TF.Init (initTFGen)
import System.Random.TF.Instances (randoms)
import Prelude as P
import Data.Avro.EncodeRaw
import Data.Avro.HasAvroSchema
import Data.Avro.Schema as S
import Data.Avro.Types as T
import Data.Avro.Zag
import Data.Avro.Zig
encodeAvro :: EncodeAvro a => a -> BL.ByteString
encodeAvro = toLazyByteString . putAvro
newSyncBytes :: IO BL.ByteString
newSyncBytes = BL.pack . DL.take 16 . randoms <$> initTFGen
encodeContainer :: EncodeAvro a => Schema -> [[a]] -> IO BL.ByteString
encodeContainer sch xss =
do sync <- newSyncBytes
return $ encodeContainerWithSync sch sync xss
containerHeaderWithSync :: Schema -> BL.ByteString -> Builder
containerHeaderWithSync sch syncBytes =
lazyByteString avroMagicBytes <>
putAvro (HashMap.fromList [("avro.schema", A.encode sch), ("avro.codec","null")] :: HashMap Text BL.ByteString) <>
lazyByteString syncBytes
where
avroMagicBytes :: BL.ByteString
avroMagicBytes = "Obj" <> BL.pack [1]
encodeContainerWithSync :: EncodeAvro a => Schema -> BL.ByteString -> [[a]] -> BL.ByteString
encodeContainerWithSync sch syncBytes xss =
toLazyByteString $
containerHeaderWithSync sch syncBytes <>
foldMap putBlocks xss
where
putBlocks ys =
let nrObj = P.length ys
nrBytes = BL.length theBytes
theBytes = toLazyByteString $ foldMap putAvro ys
in putAvro nrObj <>
putAvro nrBytes <>
lazyByteString theBytes <>
lazyByteString syncBytes
packContainerBlocks :: Schema -> [(Int, BL.ByteString)] -> IO BL.ByteString
packContainerBlocks sch blocks = do
sync <- newSyncBytes
pure $ packContainerBlocksWithSync sch sync blocks
packContainerBlocksWithSync :: Schema -> BL.ByteString -> [(Int, BL.ByteString)] -> BL.ByteString
packContainerBlocksWithSync sch syncBytes blocks =
toLazyByteString $
containerHeaderWithSync sch syncBytes <>
foldMap putBlock blocks
where
putBlock (nrObj, bytes) =
putAvro nrObj <>
putAvro (BL.length bytes) <>
lazyByteString bytes <>
lazyByteString syncBytes
packContainerValues :: Schema -> [[BL.ByteString]] -> IO BL.ByteString
packContainerValues sch values = do
sync <- newSyncBytes
pure $ packContainerValuesWithSync sch sync values
packContainerValuesWithSync :: Schema -> BL.ByteString -> [[BL.ByteString]] -> BL.ByteString
packContainerValuesWithSync sch syncBytes values =
toLazyByteString $
containerHeaderWithSync sch syncBytes <>
foldMap putBlock values
where
putBlock ys =
let nrObj = P.length ys
nrBytes = DL.foldl' (\a b -> BL.length b + a) 0 ys
theBytes = mconcat $ lazyByteString <$> ys
in putAvro nrObj <>
putAvro nrBytes <>
theBytes <>
lazyByteString syncBytes
putAvro :: EncodeAvro a => a -> Builder
putAvro = fst . runAvro . avro
getSchema :: forall a. EncodeAvro a => a -> Schema
getSchema = snd . runAvro . avro
getType :: EncodeAvro a => Proxy a -> Type
getType = getSchema . (asProxyTypeOf undefined)
newtype AvroM = AvroM { runAvro :: (Builder,Type) }
class EncodeAvro a where
avro :: a -> AvroM
avroInt :: forall a. (FiniteBits a, Integral a, EncodeRaw a) => a -> AvroM
avroInt n = AvroM (encodeRaw n, S.Int)
avroLong :: forall a. (FiniteBits a, Integral a, EncodeRaw a) => a -> AvroM
avroLong n = AvroM (encodeRaw n, S.Long)
putI :: Int -> Builder
putI = encodeRaw
instance EncodeAvro Int where
avro = avroInt
instance EncodeAvro Int8 where
avro = avroInt
instance EncodeAvro Int16 where
avro = avroInt
instance EncodeAvro Int32 where
avro = avroInt
instance EncodeAvro Int64 where
avro = avroInt
instance EncodeAvro Word8 where
avro = avroInt
instance EncodeAvro Word16 where
avro = avroInt
instance EncodeAvro Word32 where
avro = avroLong
instance EncodeAvro Word64 where
avro = avroLong
instance EncodeAvro Text where
avro t =
let bs = T.encodeUtf8 t
in AvroM (encodeRaw (B.length bs) <> byteString bs, S.String)
instance EncodeAvro TL.Text where
avro t =
let bs = TL.encodeUtf8 t
in AvroM (encodeRaw (BL.length bs) <> lazyByteString bs, S.String)
instance EncodeAvro ByteString where
avro bs = AvroM (encodeRaw (BL.length bs) <> lazyByteString bs, S.Bytes)
instance EncodeAvro B.ByteString where
avro bs = AvroM (encodeRaw (B.length bs) <> byteString bs, S.Bytes)
instance EncodeAvro String where
avro s = let t = T.pack s in avro t
instance EncodeAvro Double where
avro d = AvroM (word64LE (IEEE.doubleToWord d), S.Double)
instance EncodeAvro Float where
avro d = AvroM (word32LE (IEEE.floatToWord d), S.Float)
long0 :: Builder
long0 = encodeRaw (0 :: Word64)
instance EncodeAvro a => EncodeAvro [a] where
avro a = AvroM ( if DL.null a then long0 else encodeRaw (F.length a) <> foldMap putAvro a <> long0
, S.Array (getType (Proxy :: Proxy a))
)
instance (Ix i, EncodeAvro a) => EncodeAvro (Ar.Array i a) where
avro a = AvroM ( if F.length a == 0 then long0 else encodeRaw (F.length a) <> foldMap putAvro a <> long0
, S.Array (getType (Proxy :: Proxy a))
)
instance EncodeAvro a => EncodeAvro (V.Vector a) where
avro a = AvroM ( if V.null a then long0 else encodeRaw (F.length a) <> foldMap putAvro a <> long0
, S.Array (getType (Proxy :: Proxy a))
)
instance (U.Unbox a, EncodeAvro a) => EncodeAvro (U.Vector a) where
avro a = AvroM ( if U.null a then long0 else encodeRaw (U.length a) <> foldMap putAvro (U.toList a) <> long0
, S.Array (getType (Proxy :: Proxy a))
)
instance EncodeAvro a => EncodeAvro (S.Set a) where
avro a = AvroM ( if S.null a then long0 else encodeRaw (F.length a) <> foldMap putAvro a <> long0
, S.Array (getType (Proxy :: Proxy a))
)
instance EncodeAvro a => EncodeAvro (HashMap Text a) where
avro hm = AvroM ( if HashMap.null hm then long0 else putI (F.length hm) <> foldMap putKV (HashMap.toList hm) <> long0
, S.Map (getType (Proxy :: Proxy a))
)
where putKV (k,v) = putAvro k <> putAvro v
instance EncodeAvro a => EncodeAvro (Maybe a) where
avro Nothing = AvroM (putI 0 , S.mkUnion (S.Null:|[S.Int]))
avro (Just x) = AvroM (putI 1 <> putAvro x, S.mkUnion (S.Null:|[S.Int]))
instance EncodeAvro () where
avro () = AvroM (mempty, S.Null)
instance EncodeAvro Bool where
avro b = AvroM (word8 $ fromIntegral $ fromEnum b, S.Boolean)
instance EncodeAvro (T.Value Type) where
avro v =
case v of
T.Null -> avro ()
T.Boolean b -> avro b
T.Int i -> avro i
T.Long i -> avro i
T.Float f -> avro f
T.Double d -> avro d
T.Bytes bs -> avro bs
T.String t -> avro t
T.Array vec -> avro vec
T.Map hm -> avro hm
T.Record ty hm ->
let bs = foldMap putAvro (mapMaybe (`HashMap.lookup` hm) fs)
fs = P.map fldName (fields ty)
in AvroM (bs, ty)
T.Union opts sel val | F.length opts > 0 ->
case DL.elemIndex sel (NE.toList opts) of
Just idx -> AvroM (putI idx <> putAvro val, S.mkUnion opts)
Nothing -> error "Union encoding specifies type not found in schema"
T.Enum sch@S.Enum{..} ix t -> AvroM (putI ix, sch)
T.Fixed ty bs ->
if (B.length bs == size ty)
then AvroM (byteString bs, S.Bytes)
else error $ "Fixed type " <> show (name ty)
<> " has size " <> show (size ty)
<> " but the value has length " <> show (B.length bs)