{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Generics.GenericN
( Param
, Indexed
, FilterIndex
, Zip
, Rec (Rec, unRec)
, GenericN (..)
, GenericP (..)
, module GHC.Generics
) where
import Data.Kind
import Data.Proxy (Proxy)
import GHC.Generics
import GHC.TypeLits
import Data.Coerce
data family Param (n :: Nat) (a :: k) :: k
type family Indexed (t :: k) (i :: Nat) :: k where
Indexed (t a) i = Indexed t (i + 1) (Param i a)
Indexed t _ = t
type family FilterIndex (n :: Nat) (t :: k) :: k where
FilterIndex n (t (Param n a)) = FilterIndex n t (Param n a)
FilterIndex n (t (Param _ a)) = FilterIndex n t a
FilterIndex _ t = t
newtype Rec (p :: Type) a x = Rec { Rec p a x -> K1 R a x
unRec :: K1 R a x }
type family Zip (a :: Type -> Type) (b :: Type -> Type) :: Type -> Type where
Zip (M1 mt m s) (M1 mt m t)
= M1 mt m (Zip s t)
Zip (l :+: r) (l' :+: r')
= Zip l l' :+: Zip r r'
Zip (l :*: r) (l' :*: r')
= Zip l l' :*: Zip r r'
Zip (Rec0 p) (Rec0 a)
= Rec p a
Zip U1 U1
= U1
Zip V1 V1
= V1
class
( Coercible (Rep a) (RepN a)
, Generic a
) => GenericN (a :: Type) where
type family RepN (a :: Type) :: Type -> Type
type instance RepN a = Zip (Rep (Indexed a 0)) (Rep a)
toN :: RepN a x -> a
fromN :: a -> RepN a x
instance
( Coercible (Rep a) (RepN a)
, Generic a
) => GenericN a where
toN :: forall x. RepN a x -> a
toN :: RepN a x -> a
toN = (Rep a x -> a) -> Zip (Rep (Indexed a 0)) (Rep a) x -> a
coerce (Rep a x -> a
forall a x. Generic a => Rep a x -> a
to :: Rep a x -> a)
{-# INLINE toN #-}
fromN :: forall x. a -> RepN a x
fromN :: a -> RepN a x
fromN = (a -> Rep a x) -> a -> Zip (Rep (Indexed a 0)) (Rep a) x
coerce (a -> Rep a x
forall a x. Generic a => a -> Rep a x
from :: a -> Rep a x)
{-# INLINE fromN #-}
class
( Coercible (Rep a) (RepP n a)
, Generic a
) => GenericP (n :: Nat) (a :: Type) where
type family RepP n a :: Type -> Type
type instance RepP n a = Zip (Rep (FilterIndex n (Indexed a 0))) (Rep a)
toP :: Proxy n -> RepP n a x -> a
fromP :: Proxy n -> a -> RepP n a x
instance
( Coercible (Rep a) (RepP n a)
, Generic a
) => GenericP (n :: Nat) (a :: Type) where
toP :: forall x . Proxy n -> RepP n a x -> a
toP :: Proxy n -> RepP n a x -> a
toP Proxy n
_ = (Rep a x -> a)
-> Zip (Rep (FilterIndex n (Indexed a 0))) (Rep a) x -> a
coerce (Rep a x -> a
forall a x. Generic a => Rep a x -> a
to :: Rep a x -> a)
{-# INLINE toP #-}
fromP :: forall x . Proxy n -> a -> RepP n a x
fromP :: Proxy n -> a -> RepP n a x
fromP Proxy n
_ = (a -> Rep a x)
-> a -> Zip (Rep (FilterIndex n (Indexed a 0))) (Rep a) x
coerce (a -> Rep a x
forall a x. Generic a => a -> Rep a x
from :: a -> Rep a x)
{-# INLINE fromP #-}