{-# LANGUAGE CPP #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
module Data.Semigroup (
Semigroup(..)
, stimesMonoid
, stimesIdempotent
, stimesIdempotentMonoid
, mtimesDefault
, Min(..)
, Max(..)
, First(..)
, Last(..)
, WrappedMonoid(..)
, Dual(..)
, Endo(..)
, All(..)
, Any(..)
, Sum(..)
, Product(..)
, Option(..)
, option
, diff
, cycle1
, Arg(..)
, ArgMin
, ArgMax
) where
import Prelude hiding (foldr1)
import GHC.Base (Semigroup(..))
import Data.Semigroup.Internal
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import Data.Bifoldable
import Data.Bifunctor
import Data.Bitraversable
import Data.Coerce
import Data.Data
import GHC.Generics
cycle1 :: Semigroup m => m -> m
cycle1 :: m -> m
cycle1 xs :: m
xs = m
xs' where xs' :: m
xs' = m
xs m -> m -> m
forall a. Semigroup a => a -> a -> a
<> m
xs'
diff :: Semigroup m => m -> Endo m
diff :: m -> Endo m
diff = (m -> m) -> Endo m
forall a. (a -> a) -> Endo a
Endo ((m -> m) -> Endo m) -> (m -> m -> m) -> m -> Endo m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m -> m -> m
forall a. Semigroup a => a -> a -> a
(<>)
newtype Min a = Min { Min a -> a
getMin :: a }
deriving ( Bounded
, Eq
, Ord
, Show
, Read
, Data
, Generic
, Generic1
)
instance Enum a => Enum (Min a) where
succ :: Min a -> Min a
succ (Min a :: a
a) = a -> Min a
forall a. a -> Min a
Min (a -> a
forall a. Enum a => a -> a
succ a
a)
pred :: Min a -> Min a
pred (Min a :: a
a) = a -> Min a
forall a. a -> Min a
Min (a -> a
forall a. Enum a => a -> a
pred a
a)
toEnum :: Int -> Min a
toEnum = a -> Min a
forall a. a -> Min a
Min (a -> Min a) -> (Int -> a) -> Int -> Min a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a
forall a. Enum a => Int -> a
toEnum
fromEnum :: Min a -> Int
fromEnum = a -> Int
forall a. Enum a => a -> Int
fromEnum (a -> Int) -> (Min a -> a) -> Min a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Min a -> a
forall a. Min a -> a
getMin
enumFrom :: Min a -> [Min a]
enumFrom (Min a :: a
a) = a -> Min a
forall a. a -> Min a
Min (a -> Min a) -> [a] -> [Min a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> [a]
forall a. Enum a => a -> [a]
enumFrom a
a
enumFromThen :: Min a -> Min a -> [Min a]
enumFromThen (Min a :: a
a) (Min b :: a
b) = a -> Min a
forall a. a -> Min a
Min (a -> Min a) -> [a] -> [Min a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromThen a
a a
b
enumFromTo :: Min a -> Min a -> [Min a]
enumFromTo (Min a :: a
a) (Min b :: a
b) = a -> Min a
forall a. a -> Min a
Min (a -> Min a) -> [a] -> [Min a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromTo a
a a
b
enumFromThenTo :: Min a -> Min a -> Min a -> [Min a]
enumFromThenTo (Min a :: a
a) (Min b :: a
b) (Min c :: a
c) = a -> Min a
forall a. a -> Min a
Min (a -> Min a) -> [a] -> [Min a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> a -> [a]
forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo a
a a
b a
c
instance Ord a => Semigroup (Min a) where
<> :: Min a -> Min a -> Min a
(<>) = (a -> a -> a) -> Min a -> Min a -> Min a
forall a b. Coercible a b => a -> b
coerce (a -> a -> a
forall a. Ord a => a -> a -> a
min :: a -> a -> a)
stimes :: b -> Min a -> Min a
stimes = b -> Min a -> Min a
forall b a. Integral b => b -> a -> a
stimesIdempotent
instance (Ord a, Bounded a) => Monoid (Min a) where
mempty :: Min a
mempty = Min a
forall a. Bounded a => a
maxBound
instance Functor Min where
fmap :: (a -> b) -> Min a -> Min b
fmap f :: a -> b
f (Min x :: a
x) = b -> Min b
forall a. a -> Min a
Min (a -> b
f a
x)
instance Foldable Min where
foldMap :: (a -> m) -> Min a -> m
foldMap f :: a -> m
f (Min a :: a
a) = a -> m
f a
a
instance Traversable Min where
traverse :: (a -> f b) -> Min a -> f (Min b)
traverse f :: a -> f b
f (Min a :: a
a) = b -> Min b
forall a. a -> Min a
Min (b -> Min b) -> f b -> f (Min b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
instance Applicative Min where
pure :: a -> Min a
pure = a -> Min a
forall a. a -> Min a
Min
a :: Min a
a <* :: Min a -> Min b -> Min a
<* _ = Min a
a
_ *> :: Min a -> Min b -> Min b
*> a :: Min b
a = Min b
a
<*> :: Min (a -> b) -> Min a -> Min b
(<*>) = Min (a -> b) -> Min a -> Min b
forall a b. Coercible a b => a -> b
coerce
liftA2 :: (a -> b -> c) -> Min a -> Min b -> Min c
liftA2 = (a -> b -> c) -> Min a -> Min b -> Min c
forall a b. Coercible a b => a -> b
coerce
instance Monad Min where
>> :: Min a -> Min b -> Min b
(>>) = Min a -> Min b -> Min b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
Min a :: a
a >>= :: Min a -> (a -> Min b) -> Min b
>>= f :: a -> Min b
f = a -> Min b
f a
a
instance MonadFix Min where
mfix :: (a -> Min a) -> Min a
mfix f :: a -> Min a
f = (Min a -> Min a) -> Min a
forall a. (a -> a) -> a
fix (a -> Min a
f (a -> Min a) -> (Min a -> a) -> Min a -> Min a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Min a -> a
forall a. Min a -> a
getMin)
instance Num a => Num (Min a) where
(Min a :: a
a) + :: Min a -> Min a -> Min a
+ (Min b :: a
b) = a -> Min a
forall a. a -> Min a
Min (a
a a -> a -> a
forall a. Num a => a -> a -> a
+ a
b)
(Min a :: a
a) * :: Min a -> Min a -> Min a
* (Min b :: a
b) = a -> Min a
forall a. a -> Min a
Min (a
a a -> a -> a
forall a. Num a => a -> a -> a
* a
b)
(Min a :: a
a) - :: Min a -> Min a -> Min a
- (Min b :: a
b) = a -> Min a
forall a. a -> Min a
Min (a
a a -> a -> a
forall a. Num a => a -> a -> a
- a
b)
negate :: Min a -> Min a
negate (Min a :: a
a) = a -> Min a
forall a. a -> Min a
Min (a -> a
forall a. Num a => a -> a
negate a
a)
abs :: Min a -> Min a
abs (Min a :: a
a) = a -> Min a
forall a. a -> Min a
Min (a -> a
forall a. Num a => a -> a
abs a
a)
signum :: Min a -> Min a
signum (Min a :: a
a) = a -> Min a
forall a. a -> Min a
Min (a -> a
forall a. Num a => a -> a
signum a
a)
fromInteger :: Integer -> Min a
fromInteger = a -> Min a
forall a. a -> Min a
Min (a -> Min a) -> (Integer -> a) -> Integer -> Min a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> a
forall a. Num a => Integer -> a
fromInteger
newtype Max a = Max { Max a -> a
getMax :: a }
deriving ( Bounded
, Eq
, Ord
, Show
, Read
, Data
, Generic
, Generic1
)
instance Enum a => Enum (Max a) where
succ :: Max a -> Max a
succ (Max a :: a
a) = a -> Max a
forall a. a -> Max a
Max (a -> a
forall a. Enum a => a -> a
succ a
a)
pred :: Max a -> Max a
pred (Max a :: a
a) = a -> Max a
forall a. a -> Max a
Max (a -> a
forall a. Enum a => a -> a
pred a
a)
toEnum :: Int -> Max a
toEnum = a -> Max a
forall a. a -> Max a
Max (a -> Max a) -> (Int -> a) -> Int -> Max a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a
forall a. Enum a => Int -> a
toEnum
fromEnum :: Max a -> Int
fromEnum = a -> Int
forall a. Enum a => a -> Int
fromEnum (a -> Int) -> (Max a -> a) -> Max a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Max a -> a
forall a. Max a -> a
getMax
enumFrom :: Max a -> [Max a]
enumFrom (Max a :: a
a) = a -> Max a
forall a. a -> Max a
Max (a -> Max a) -> [a] -> [Max a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> [a]
forall a. Enum a => a -> [a]
enumFrom a
a
enumFromThen :: Max a -> Max a -> [Max a]
enumFromThen (Max a :: a
a) (Max b :: a
b) = a -> Max a
forall a. a -> Max a
Max (a -> Max a) -> [a] -> [Max a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromThen a
a a
b
enumFromTo :: Max a -> Max a -> [Max a]
enumFromTo (Max a :: a
a) (Max b :: a
b) = a -> Max a
forall a. a -> Max a
Max (a -> Max a) -> [a] -> [Max a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromTo a
a a
b
enumFromThenTo :: Max a -> Max a -> Max a -> [Max a]
enumFromThenTo (Max a :: a
a) (Max b :: a
b) (Max c :: a
c) = a -> Max a
forall a. a -> Max a
Max (a -> Max a) -> [a] -> [Max a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> a -> [a]
forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo a
a a
b a
c
instance Ord a => Semigroup (Max a) where
<> :: Max a -> Max a -> Max a
(<>) = (a -> a -> a) -> Max a -> Max a -> Max a
forall a b. Coercible a b => a -> b
coerce (a -> a -> a
forall a. Ord a => a -> a -> a
max :: a -> a -> a)
stimes :: b -> Max a -> Max a
stimes = b -> Max a -> Max a
forall b a. Integral b => b -> a -> a
stimesIdempotent
instance (Ord a, Bounded a) => Monoid (Max a) where
mempty :: Max a
mempty = Max a
forall a. Bounded a => a
minBound
instance Functor Max where
fmap :: (a -> b) -> Max a -> Max b
fmap f :: a -> b
f (Max x :: a
x) = b -> Max b
forall a. a -> Max a
Max (a -> b
f a
x)
instance Foldable Max where
foldMap :: (a -> m) -> Max a -> m
foldMap f :: a -> m
f (Max a :: a
a) = a -> m
f a
a
instance Traversable Max where
traverse :: (a -> f b) -> Max a -> f (Max b)
traverse f :: a -> f b
f (Max a :: a
a) = b -> Max b
forall a. a -> Max a
Max (b -> Max b) -> f b -> f (Max b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
instance Applicative Max where
pure :: a -> Max a
pure = a -> Max a
forall a. a -> Max a
Max
a :: Max a
a <* :: Max a -> Max b -> Max a
<* _ = Max a
a
_ *> :: Max a -> Max b -> Max b
*> a :: Max b
a = Max b
a
<*> :: Max (a -> b) -> Max a -> Max b
(<*>) = Max (a -> b) -> Max a -> Max b
forall a b. Coercible a b => a -> b
coerce
liftA2 :: (a -> b -> c) -> Max a -> Max b -> Max c
liftA2 = (a -> b -> c) -> Max a -> Max b -> Max c
forall a b. Coercible a b => a -> b
coerce
instance Monad Max where
>> :: Max a -> Max b -> Max b
(>>) = Max a -> Max b -> Max b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
Max a :: a
a >>= :: Max a -> (a -> Max b) -> Max b
>>= f :: a -> Max b
f = a -> Max b
f a
a
instance MonadFix Max where
mfix :: (a -> Max a) -> Max a
mfix f :: a -> Max a
f = (Max a -> Max a) -> Max a
forall a. (a -> a) -> a
fix (a -> Max a
f (a -> Max a) -> (Max a -> a) -> Max a -> Max a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Max a -> a
forall a. Max a -> a
getMax)
instance Num a => Num (Max a) where
(Max a :: a
a) + :: Max a -> Max a -> Max a
+ (Max b :: a
b) = a -> Max a
forall a. a -> Max a
Max (a
a a -> a -> a
forall a. Num a => a -> a -> a
+ a
b)
(Max a :: a
a) * :: Max a -> Max a -> Max a
* (Max b :: a
b) = a -> Max a
forall a. a -> Max a
Max (a
a a -> a -> a
forall a. Num a => a -> a -> a
* a
b)
(Max a :: a
a) - :: Max a -> Max a -> Max a
- (Max b :: a
b) = a -> Max a
forall a. a -> Max a
Max (a
a a -> a -> a
forall a. Num a => a -> a -> a
- a
b)
negate :: Max a -> Max a
negate (Max a :: a
a) = a -> Max a
forall a. a -> Max a
Max (a -> a
forall a. Num a => a -> a
negate a
a)
abs :: Max a -> Max a
abs (Max a :: a
a) = a -> Max a
forall a. a -> Max a
Max (a -> a
forall a. Num a => a -> a
abs a
a)
signum :: Max a -> Max a
signum (Max a :: a
a) = a -> Max a
forall a. a -> Max a
Max (a -> a
forall a. Num a => a -> a
signum a
a)
fromInteger :: Integer -> Max a
fromInteger = a -> Max a
forall a. a -> Max a
Max (a -> Max a) -> (Integer -> a) -> Integer -> Max a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> a
forall a. Num a => Integer -> a
fromInteger
data Arg a b = Arg a b deriving
( Show
, Read
, Data
, Generic
, Generic1
)
type ArgMin a b = Min (Arg a b)
type ArgMax a b = Max (Arg a b)
instance Functor (Arg a) where
fmap :: (a -> b) -> Arg a a -> Arg a b
fmap f :: a -> b
f (Arg x :: a
x a :: a
a) = a -> b -> Arg a b
forall a b. a -> b -> Arg a b
Arg a
x (a -> b
f a
a)
instance Foldable (Arg a) where
foldMap :: (a -> m) -> Arg a a -> m
foldMap f :: a -> m
f (Arg _ a :: a
a) = a -> m
f a
a
instance Traversable (Arg a) where
traverse :: (a -> f b) -> Arg a a -> f (Arg a b)
traverse f :: a -> f b
f (Arg x :: a
x a :: a
a) = a -> b -> Arg a b
forall a b. a -> b -> Arg a b
Arg a
x (b -> Arg a b) -> f b -> f (Arg a b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
instance Eq a => Eq (Arg a b) where
Arg a :: a
a _ == :: Arg a b -> Arg a b -> Bool
== Arg b :: a
b _ = a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
b
instance Ord a => Ord (Arg a b) where
Arg a :: a
a _ compare :: Arg a b -> Arg a b -> Ordering
`compare` Arg b :: a
b _ = a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
a a
b
min :: Arg a b -> Arg a b -> Arg a b
min x :: Arg a b
x@(Arg a :: a
a _) y :: Arg a b
y@(Arg b :: a
b _)
| a
a a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
b = Arg a b
x
| Bool
otherwise = Arg a b
y
max :: Arg a b -> Arg a b -> Arg a b
max x :: Arg a b
x@(Arg a :: a
a _) y :: Arg a b
y@(Arg b :: a
b _)
| a
a a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
b = Arg a b
x
| Bool
otherwise = Arg a b
y
instance Bifunctor Arg where
bimap :: (a -> b) -> (c -> d) -> Arg a c -> Arg b d
bimap f :: a -> b
f g :: c -> d
g (Arg a :: a
a b :: c
b) = b -> d -> Arg b d
forall a b. a -> b -> Arg a b
Arg (a -> b
f a
a) (c -> d
g c
b)
instance Bifoldable Arg where
bifoldMap :: (a -> m) -> (b -> m) -> Arg a b -> m
bifoldMap f :: a -> m
f g :: b -> m
g (Arg a :: a
a b :: b
b) = a -> m
f a
a m -> m -> m
forall a. Semigroup a => a -> a -> a
<> b -> m
g b
b
instance Bitraversable Arg where
bitraverse :: (a -> f c) -> (b -> f d) -> Arg a b -> f (Arg c d)
bitraverse f :: a -> f c
f g :: b -> f d
g (Arg a :: a
a b :: b
b) = c -> d -> Arg c d
forall a b. a -> b -> Arg a b
Arg (c -> d -> Arg c d) -> f c -> f (d -> Arg c d)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f c
f a
a f (d -> Arg c d) -> f d -> f (Arg c d)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> f d
g b
b
newtype First a = First { First a -> a
getFirst :: a }
deriving ( Bounded
, Eq
, Ord
, Show
, Read
, Data
, Generic
, Generic1
)
instance Enum a => Enum (First a) where
succ :: First a -> First a
succ (First a :: a
a) = a -> First a
forall a. a -> First a
First (a -> a
forall a. Enum a => a -> a
succ a
a)
pred :: First a -> First a
pred (First a :: a
a) = a -> First a
forall a. a -> First a
First (a -> a
forall a. Enum a => a -> a
pred a
a)
toEnum :: Int -> First a
toEnum = a -> First a
forall a. a -> First a
First (a -> First a) -> (Int -> a) -> Int -> First a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a
forall a. Enum a => Int -> a
toEnum
fromEnum :: First a -> Int
fromEnum = a -> Int
forall a. Enum a => a -> Int
fromEnum (a -> Int) -> (First a -> a) -> First a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. First a -> a
forall a. First a -> a
getFirst
enumFrom :: First a -> [First a]
enumFrom (First a :: a
a) = a -> First a
forall a. a -> First a
First (a -> First a) -> [a] -> [First a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> [a]
forall a. Enum a => a -> [a]
enumFrom a
a
enumFromThen :: First a -> First a -> [First a]
enumFromThen (First a :: a
a) (First b :: a
b) = a -> First a
forall a. a -> First a
First (a -> First a) -> [a] -> [First a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromThen a
a a
b
enumFromTo :: First a -> First a -> [First a]
enumFromTo (First a :: a
a) (First b :: a
b) = a -> First a
forall a. a -> First a
First (a -> First a) -> [a] -> [First a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromTo a
a a
b
enumFromThenTo :: First a -> First a -> First a -> [First a]
enumFromThenTo (First a :: a
a) (First b :: a
b) (First c :: a
c) = a -> First a
forall a. a -> First a
First (a -> First a) -> [a] -> [First a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> a -> [a]
forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo a
a a
b a
c
instance Semigroup (First a) where
a :: First a
a <> :: First a -> First a -> First a
<> _ = First a
a
stimes :: b -> First a -> First a
stimes = b -> First a -> First a
forall b a. Integral b => b -> a -> a
stimesIdempotent
instance Functor First where
fmap :: (a -> b) -> First a -> First b
fmap f :: a -> b
f (First x :: a
x) = b -> First b
forall a. a -> First a
First (a -> b
f a
x)
instance Foldable First where
foldMap :: (a -> m) -> First a -> m
foldMap f :: a -> m
f (First a :: a
a) = a -> m
f a
a
instance Traversable First where
traverse :: (a -> f b) -> First a -> f (First b)
traverse f :: a -> f b
f (First a :: a
a) = b -> First b
forall a. a -> First a
First (b -> First b) -> f b -> f (First b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
instance Applicative First where
pure :: a -> First a
pure x :: a
x = a -> First a
forall a. a -> First a
First a
x
a :: First a
a <* :: First a -> First b -> First a
<* _ = First a
a
_ *> :: First a -> First b -> First b
*> a :: First b
a = First b
a
<*> :: First (a -> b) -> First a -> First b
(<*>) = First (a -> b) -> First a -> First b
forall a b. Coercible a b => a -> b
coerce
liftA2 :: (a -> b -> c) -> First a -> First b -> First c
liftA2 = (a -> b -> c) -> First a -> First b -> First c
forall a b. Coercible a b => a -> b
coerce
instance Monad First where
>> :: First a -> First b -> First b
(>>) = First a -> First b -> First b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
First a :: a
a >>= :: First a -> (a -> First b) -> First b
>>= f :: a -> First b
f = a -> First b
f a
a
instance MonadFix First where
mfix :: (a -> First a) -> First a
mfix f :: a -> First a
f = (First a -> First a) -> First a
forall a. (a -> a) -> a
fix (a -> First a
f (a -> First a) -> (First a -> a) -> First a -> First a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. First a -> a
forall a. First a -> a
getFirst)
newtype Last a = Last { Last a -> a
getLast :: a }
deriving ( Bounded
, Eq
, Ord
, Show
, Read
, Data
, Generic
, Generic1
)
instance Enum a => Enum (Last a) where
succ :: Last a -> Last a
succ (Last a :: a
a) = a -> Last a
forall a. a -> Last a
Last (a -> a
forall a. Enum a => a -> a
succ a
a)
pred :: Last a -> Last a
pred (Last a :: a
a) = a -> Last a
forall a. a -> Last a
Last (a -> a
forall a. Enum a => a -> a
pred a
a)
toEnum :: Int -> Last a
toEnum = a -> Last a
forall a. a -> Last a
Last (a -> Last a) -> (Int -> a) -> Int -> Last a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a
forall a. Enum a => Int -> a
toEnum
fromEnum :: Last a -> Int
fromEnum = a -> Int
forall a. Enum a => a -> Int
fromEnum (a -> Int) -> (Last a -> a) -> Last a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Last a -> a
forall a. Last a -> a
getLast
enumFrom :: Last a -> [Last a]
enumFrom (Last a :: a
a) = a -> Last a
forall a. a -> Last a
Last (a -> Last a) -> [a] -> [Last a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> [a]
forall a. Enum a => a -> [a]
enumFrom a
a
enumFromThen :: Last a -> Last a -> [Last a]
enumFromThen (Last a :: a
a) (Last b :: a
b) = a -> Last a
forall a. a -> Last a
Last (a -> Last a) -> [a] -> [Last a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromThen a
a a
b
enumFromTo :: Last a -> Last a -> [Last a]
enumFromTo (Last a :: a
a) (Last b :: a
b) = a -> Last a
forall a. a -> Last a
Last (a -> Last a) -> [a] -> [Last a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromTo a
a a
b
enumFromThenTo :: Last a -> Last a -> Last a -> [Last a]
enumFromThenTo (Last a :: a
a) (Last b :: a
b) (Last c :: a
c) = a -> Last a
forall a. a -> Last a
Last (a -> Last a) -> [a] -> [Last a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> a -> [a]
forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo a
a a
b a
c
instance Semigroup (Last a) where
_ <> :: Last a -> Last a -> Last a
<> b :: Last a
b = Last a
b
stimes :: b -> Last a -> Last a
stimes = b -> Last a -> Last a
forall b a. Integral b => b -> a -> a
stimesIdempotent
instance Functor Last where
fmap :: (a -> b) -> Last a -> Last b
fmap f :: a -> b
f (Last x :: a
x) = b -> Last b
forall a. a -> Last a
Last (a -> b
f a
x)
a :: a
a <$ :: a -> Last b -> Last a
<$ _ = a -> Last a
forall a. a -> Last a
Last a
a
instance Foldable Last where
foldMap :: (a -> m) -> Last a -> m
foldMap f :: a -> m
f (Last a :: a
a) = a -> m
f a
a
instance Traversable Last where
traverse :: (a -> f b) -> Last a -> f (Last b)
traverse f :: a -> f b
f (Last a :: a
a) = b -> Last b
forall a. a -> Last a
Last (b -> Last b) -> f b -> f (Last b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
instance Applicative Last where
pure :: a -> Last a
pure = a -> Last a
forall a. a -> Last a
Last
a :: Last a
a <* :: Last a -> Last b -> Last a
<* _ = Last a
a
_ *> :: Last a -> Last b -> Last b
*> a :: Last b
a = Last b
a
<*> :: Last (a -> b) -> Last a -> Last b
(<*>) = Last (a -> b) -> Last a -> Last b
forall a b. Coercible a b => a -> b
coerce
liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c
liftA2 = (a -> b -> c) -> Last a -> Last b -> Last c
forall a b. Coercible a b => a -> b
coerce
instance Monad Last where
>> :: Last a -> Last b -> Last b
(>>) = Last a -> Last b -> Last b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
Last a :: a
a >>= :: Last a -> (a -> Last b) -> Last b
>>= f :: a -> Last b
f = a -> Last b
f a
a
instance MonadFix Last where
mfix :: (a -> Last a) -> Last a
mfix f :: a -> Last a
f = (Last a -> Last a) -> Last a
forall a. (a -> a) -> a
fix (a -> Last a
f (a -> Last a) -> (Last a -> a) -> Last a -> Last a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Last a -> a
forall a. Last a -> a
getLast)
newtype WrappedMonoid m = WrapMonoid { WrappedMonoid m -> m
unwrapMonoid :: m }
deriving ( Bounded
, Eq
, Ord
, Show
, Read
, Data
, Generic
, Generic1
)
instance Monoid m => Semigroup (WrappedMonoid m) where
<> :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m
(<>) = (m -> m -> m)
-> WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m
forall a b. Coercible a b => a -> b
coerce (m -> m -> m
forall a. Monoid a => a -> a -> a
mappend :: m -> m -> m)
instance Monoid m => Monoid (WrappedMonoid m) where
mempty :: WrappedMonoid m
mempty = m -> WrappedMonoid m
forall m. m -> WrappedMonoid m
WrapMonoid m
forall a. Monoid a => a
mempty
instance Enum a => Enum (WrappedMonoid a) where
succ :: WrappedMonoid a -> WrappedMonoid a
succ (WrapMonoid a :: a
a) = a -> WrappedMonoid a
forall m. m -> WrappedMonoid m
WrapMonoid (a -> a
forall a. Enum a => a -> a
succ a
a)
pred :: WrappedMonoid a -> WrappedMonoid a
pred (WrapMonoid a :: a
a) = a -> WrappedMonoid a
forall m. m -> WrappedMonoid m
WrapMonoid (a -> a
forall a. Enum a => a -> a
pred a
a)
toEnum :: Int -> WrappedMonoid a
toEnum = a -> WrappedMonoid a
forall m. m -> WrappedMonoid m
WrapMonoid (a -> WrappedMonoid a) -> (Int -> a) -> Int -> WrappedMonoid a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a
forall a. Enum a => Int -> a
toEnum
fromEnum :: WrappedMonoid a -> Int
fromEnum = a -> Int
forall a. Enum a => a -> Int
fromEnum (a -> Int) -> (WrappedMonoid a -> a) -> WrappedMonoid a -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. WrappedMonoid a -> a
forall m. WrappedMonoid m -> m
unwrapMonoid
enumFrom :: WrappedMonoid a -> [WrappedMonoid a]
enumFrom (WrapMonoid a :: a
a) = a -> WrappedMonoid a
forall m. m -> WrappedMonoid m
WrapMonoid (a -> WrappedMonoid a) -> [a] -> [WrappedMonoid a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> [a]
forall a. Enum a => a -> [a]
enumFrom a
a
enumFromThen :: WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a]
enumFromThen (WrapMonoid a :: a
a) (WrapMonoid b :: a
b) = a -> WrappedMonoid a
forall m. m -> WrappedMonoid m
WrapMonoid (a -> WrappedMonoid a) -> [a] -> [WrappedMonoid a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromThen a
a a
b
enumFromTo :: WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a]
enumFromTo (WrapMonoid a :: a
a) (WrapMonoid b :: a
b) = a -> WrappedMonoid a
forall m. m -> WrappedMonoid m
WrapMonoid (a -> WrappedMonoid a) -> [a] -> [WrappedMonoid a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> [a]
forall a. Enum a => a -> a -> [a]
enumFromTo a
a a
b
enumFromThenTo :: WrappedMonoid a
-> WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a]
enumFromThenTo (WrapMonoid a :: a
a) (WrapMonoid b :: a
b) (WrapMonoid c :: a
c) =
a -> WrappedMonoid a
forall m. m -> WrappedMonoid m
WrapMonoid (a -> WrappedMonoid a) -> [a] -> [WrappedMonoid a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> a -> a -> [a]
forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo a
a a
b a
c
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
mtimesDefault :: b -> a -> a
mtimesDefault n :: b
n x :: a
x
| b
n b -> b -> Bool
forall a. Eq a => a -> a -> Bool
== 0 = a
forall a. Monoid a => a
mempty
| Bool
otherwise = WrappedMonoid a -> a
forall m. WrappedMonoid m -> m
unwrapMonoid (b -> WrappedMonoid a -> WrappedMonoid a
forall a b. (Semigroup a, Integral b) => b -> a -> a
stimes b
n (a -> WrappedMonoid a
forall m. m -> WrappedMonoid m
WrapMonoid a
x))
newtype Option a = Option { Option a -> Maybe a
getOption :: Maybe a }
deriving ( Eq
, Ord
, Show
, Read
, Data
, Generic
, Generic1
)
instance Functor Option where
fmap :: (a -> b) -> Option a -> Option b
fmap f :: a -> b
f (Option a :: Maybe a
a) = Maybe b -> Option b
forall a. Maybe a -> Option a
Option ((a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Maybe a
a)
instance Applicative Option where
pure :: a -> Option a
pure a :: a
a = Maybe a -> Option a
forall a. Maybe a -> Option a
Option (a -> Maybe a
forall a. a -> Maybe a
Just a
a)
Option a :: Maybe (a -> b)
a <*> :: Option (a -> b) -> Option a -> Option b
<*> Option b :: Maybe a
b = Maybe b -> Option b
forall a. Maybe a -> Option a
Option (Maybe (a -> b)
a Maybe (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Maybe a
b)
liftA2 :: (a -> b -> c) -> Option a -> Option b -> Option c
liftA2 f :: a -> b -> c
f (Option x :: Maybe a
x) (Option y :: Maybe b
y) = Maybe c -> Option c
forall a. Maybe a -> Option a
Option ((a -> b -> c) -> Maybe a -> Maybe b -> Maybe c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
f Maybe a
x Maybe b
y)
Option Nothing *> :: Option a -> Option b -> Option b
*> _ = Maybe b -> Option b
forall a. Maybe a -> Option a
Option Maybe b
forall a. Maybe a
Nothing
_ *> b :: Option b
b = Option b
b
instance Monad Option where
Option (Just a :: a
a) >>= :: Option a -> (a -> Option b) -> Option b
>>= k :: a -> Option b
k = a -> Option b
k a
a
_ >>= _ = Maybe b -> Option b
forall a. Maybe a -> Option a
Option Maybe b
forall a. Maybe a
Nothing
>> :: Option a -> Option b -> Option b
(>>) = Option a -> Option b -> Option b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
instance Alternative Option where
empty :: Option a
empty = Maybe a -> Option a
forall a. Maybe a -> Option a
Option Maybe a
forall a. Maybe a
Nothing
Option Nothing <|> :: Option a -> Option a -> Option a
<|> b :: Option a
b = Option a
b
a :: Option a
a <|> _ = Option a
a
instance MonadPlus Option
instance MonadFix Option where
mfix :: (a -> Option a) -> Option a
mfix f :: a -> Option a
f = Maybe a -> Option a
forall a. Maybe a -> Option a
Option ((a -> Maybe a) -> Maybe a
forall (m :: * -> *) a. MonadFix m => (a -> m a) -> m a
mfix (Option a -> Maybe a
forall a. Option a -> Maybe a
getOption (Option a -> Maybe a) -> (a -> Option a) -> a -> Maybe a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Option a
f))
instance Foldable Option where
foldMap :: (a -> m) -> Option a -> m
foldMap f :: a -> m
f (Option (Just m :: a
m)) = a -> m
f a
m
foldMap _ (Option Nothing) = m
forall a. Monoid a => a
mempty
instance Traversable Option where
traverse :: (a -> f b) -> Option a -> f (Option b)
traverse f :: a -> f b
f (Option (Just a :: a
a)) = Maybe b -> Option b
forall a. Maybe a -> Option a
Option (Maybe b -> Option b) -> (b -> Maybe b) -> b -> Option b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Maybe b
forall a. a -> Maybe a
Just (b -> Option b) -> f b -> f (Option b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
traverse _ (Option Nothing) = Option b -> f (Option b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> Option b
forall a. Maybe a -> Option a
Option Maybe b
forall a. Maybe a
Nothing)
option :: b -> (a -> b) -> Option a -> b
option :: b -> (a -> b) -> Option a -> b
option n :: b
n j :: a -> b
j (Option m :: Maybe a
m) = b -> (a -> b) -> Maybe a -> b
forall b a. b -> (a -> b) -> Maybe a -> b
maybe b
n a -> b
j Maybe a
m
instance Semigroup a => Semigroup (Option a) where
<> :: Option a -> Option a -> Option a
(<>) = (Maybe a -> Maybe a -> Maybe a) -> Option a -> Option a -> Option a
forall a b. Coercible a b => a -> b
coerce (Maybe a -> Maybe a -> Maybe a
forall a. Semigroup a => a -> a -> a
(<>) :: Maybe a -> Maybe a -> Maybe a)
#if !defined(__HADDOCK_VERSION__)
stimes _ (Option Nothing) = Option Nothing
stimes n (Option (Just a)) = case compare n 0 of
LT -> errorWithoutStackTrace "stimes: Option, negative multiplier"
EQ -> Option Nothing
GT -> Option (Just (stimes n a))
#endif
instance Semigroup a => Monoid (Option a) where
mempty :: Option a
mempty = Maybe a -> Option a
forall a. Maybe a -> Option a
Option Maybe a
forall a. Maybe a
Nothing