base-compat-batteries-0.14.0: base-compat with extra batteries
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Monoid.Compat

Synopsis

Documentation

newtype Any #

Boolean monoid under disjunction (||).

>>> getAny (Any True <> mempty <> Any False)
True
>>> getAny (mconcat (map (\x -> Any (even x)) [2,4,6,7,8]))
True

Constructors

Any 

Fields

Instances

Instances details
Monoid Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Semigroup Any

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Bounded Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Any #

maxBound :: Any #

Generic Any 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep Any :: Type -> Type #

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Read Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Eq Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Ord Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Any -> Any -> Ordering #

(<) :: Any -> Any -> Bool #

(<=) :: Any -> Any -> Bool #

(>) :: Any -> Any -> Bool #

(>=) :: Any -> Any -> Bool #

max :: Any -> Any -> Any #

min :: Any -> Any -> Any #

type Rep Any

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep Any = D1 ('MetaData "Any" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Any" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAny") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))

newtype Sum a #

Monoid under addition.

>>> getSum (Sum 1 <> Sum 2 <> mempty)
3

Constructors

Sum 

Fields

Instances

Instances details
Foldable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldMap' :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Foldable1 Sum

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Sum m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Sum a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Sum a -> m #

toNonEmpty :: Sum a -> NonEmpty a #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

head :: Sum a -> a #

last :: Sum a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Sum a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Sum a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Sum a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Sum a -> b #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Applicative Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

liftA2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Functor Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Monad Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

Generic1 Sum 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Sum :: k -> Type #

Methods

from1 :: forall (a :: k). Sum a -> Rep1 Sum a #

to1 :: forall (a :: k). Rep1 Sum a -> Sum a #

Num a => Monoid (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Num a => Semigroup (Sum a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Bounded a => Bounded (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Sum a #

maxBound :: Sum a #

Generic (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Sum a) :: Type -> Type #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Num a => Num (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Read a => Read (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Eq a => Eq (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Ord a => Ord (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

type Rep1 Sum

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Sum a) = D1 ('MetaData "Sum" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

newtype Product a #

Monoid under multiplication.

>>> getProduct (Product 3 <> Product 4 <> mempty)
12

Constructors

Product 

Fields

Instances

Instances details
Foldable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldMap' :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Foldable1 Product

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Product m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Product a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Product a -> m #

toNonEmpty :: Product a -> NonEmpty a #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

head :: Product a -> a #

last :: Product a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Product a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Product a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Product a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Product a -> b #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Applicative Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

liftA2 :: (a -> b -> c) -> Product a -> Product b -> Product c #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Functor Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Monad Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

Generic1 Product 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Product :: k -> Type #

Methods

from1 :: forall (a :: k). Product a -> Rep1 Product a #

to1 :: forall (a :: k). Rep1 Product a -> Product a #

Num a => Monoid (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Num a => Semigroup (Product a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Bounded a => Bounded (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Generic (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Product a) :: Type -> Type #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Num a => Num (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Read a => Read (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Eq a => Eq (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Ord a => Ord (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

type Rep1 Product

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Product a) = D1 ('MetaData "Product" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

newtype Last a #

Maybe monoid returning the rightmost non-Nothing value.

Last a is isomorphic to Dual (First a), and thus to Dual (Alt Maybe a)

>>> getLast (Last (Just "hello") <> Last Nothing <> Last (Just "world"))
Just "world"

Beware that Data.Monoid.Last is different from Data.Semigroup.Last. The former returns the last non-Nothing, so x <> Data.Monoid.Last Nothing = x. The latter simply returns the last value, thus x <> Data.Semigroup.Last Nothing = Data.Semigroup.Last Nothing.

Constructors

Last 

Fields

Instances

Instances details
Foldable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldMap' :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Traversable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Applicative Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Functor Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Monad Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

Generic1 Last 
Instance details

Defined in Data.Monoid

Associated Types

type Rep1 Last :: k -> Type #

Methods

from1 :: forall (a :: k). Last a -> Rep1 Last a #

to1 :: forall (a :: k). Rep1 Last a -> Last a #

Monoid (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Generic (Last a) 
Instance details

Defined in Data.Monoid

Associated Types

type Rep (Last a) :: Type -> Type #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Read a => Read (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Show a => Show (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Eq a => Eq (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Ord a => Ord (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

type Rep1 Last

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

type Rep1 Last = D1 ('MetaData "Last" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))
type Rep (Last a)

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

type Rep (Last a) = D1 ('MetaData "Last" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe a))))

newtype First a #

Maybe monoid returning the leftmost non-Nothing value.

First a is isomorphic to Alt Maybe a, but precedes it historically.

>>> getFirst (First (Just "hello") <> First Nothing <> First (Just "world"))
Just "hello"

Beware that Data.Monoid.First is different from Data.Semigroup.First. The former returns the first non-Nothing, so Data.Monoid.First Nothing <> x = x. The latter simply returns the first value, thus Data.Semigroup.First Nothing <> x = Data.Semigroup.First Nothing.

Constructors

First 

Fields

Instances

Instances details
Foldable First

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldMap' :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Traversable First

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Applicative First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Functor First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Monad First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

Generic1 First 
Instance details

Defined in Data.Monoid

Associated Types

type Rep1 First :: k -> Type #

Methods

from1 :: forall (a :: k). First a -> Rep1 First a #

to1 :: forall (a :: k). Rep1 First a -> First a #

Monoid (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Generic (First a) 
Instance details

Defined in Data.Monoid

Associated Types

type Rep (First a) :: Type -> Type #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Read a => Read (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Show a => Show (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Eq a => Eq (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Ord a => Ord (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

type Rep1 First

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

type Rep1 First = D1 ('MetaData "First" "Data.Monoid" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))
type Rep (First a)

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

type Rep (First a) = D1 ('MetaData "First" "Data.Monoid" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe a))))

class Semigroup a => Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

Right identity
x <> mempty = x
Left identity
mempty <> x = x
Associativity
x <> (y <> z) = (x <> y) <> z (Semigroup law)
Concatenation
mconcat = foldr (<>) mempty

You can alternatively define mconcat instead of mempty, in which case the laws are:

Unit
mconcat (pure x) = x
Multiplication
mconcat (join xss) = mconcat (fmap mconcat xss)
Subclass
mconcat (toList xs) = sconcat xs

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

Minimal complete definition

mempty | mconcat

Methods

mempty :: a #

Identity of mappend

>>> "Hello world" <> mempty
"Hello world"

mappend :: a -> a -> a #

An associative operation

NOTE: This method is redundant and has the default implementation mappend = (<>) since base-4.11.0.0. Should it be implemented manually, since mappend is a synonym for (<>), it is expected that the two functions are defined the same way. In a future GHC release mappend will be removed from Monoid.

mconcat :: [a] -> a #

Fold a list using the monoid.

For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

>>> mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"

Instances

Instances details
Monoid All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid Ordering

Since: base-2.1

Instance details

Defined in GHC.Base

Monoid ()

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

FiniteBits a => Monoid (And a)

This constraint is arguably too strong. However, as some types (such as Natural) have undefined complement, this is the only safe choice.

Since: base-4.16

Instance details

Defined in Data.Bits

Methods

mempty :: And a #

mappend :: And a -> And a -> And a #

mconcat :: [And a] -> And a #

FiniteBits a => Monoid (Iff a)

This constraint is arguably too strong. However, as some types (such as Natural) have undefined complement, this is the only safe choice.

Since: base-4.16

Instance details

Defined in Data.Bits

Methods

mempty :: Iff a #

mappend :: Iff a -> Iff a -> Iff a #

mconcat :: [Iff a] -> Iff a #

Bits a => Monoid (Ior a)

Since: base-4.16

Instance details

Defined in Data.Bits

Methods

mempty :: Ior a #

mappend :: Ior a -> Ior a -> Ior a #

mconcat :: [Ior a] -> Ior a #

Bits a => Monoid (Xor a)

Since: base-4.16

Instance details

Defined in Data.Bits

Methods

mempty :: Xor a #

mappend :: Xor a -> Xor a -> Xor a #

mconcat :: [Xor a] -> Xor a #

Monoid (Comparison a)

mempty on comparisons always returns EQ. Without newtypes this equals pure (pure EQ).

mempty :: Comparison a
mempty = Comparison _ _ -> EQ
Instance details

Defined in Data.Functor.Contravariant

Monoid (Equivalence a)

mempty on equivalences always returns True. Without newtypes this equals pure (pure True).

mempty :: Equivalence a
mempty = Equivalence _ _ -> True
Instance details

Defined in Data.Functor.Contravariant

Monoid (Predicate a)

mempty on predicates always returns True. Without newtypes this equals pure True.

mempty :: Predicate a
mempty = _ -> True
Instance details

Defined in Data.Functor.Contravariant

Monoid a => Monoid (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

Monoid (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

(Ord a, Bounded a) => Monoid (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

(Ord a, Bounded a) => Monoid (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

Monoid m => Monoid (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Monoid a => Monoid (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Endo a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Num a => Monoid (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Num a => Monoid (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Monoid a => Monoid (STM a)

Since: base-4.17.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

mempty :: STM a #

mappend :: STM a -> STM a -> STM a #

mconcat :: [STM a] -> STM a #

Monoid a => Monoid (IO a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

Semigroup a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S."

Since 4.11.0: constraint on inner a value generalised from Monoid to Semigroup.

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (a)

Since: base-4.15

Instance details

Defined in GHC.Base

Methods

mempty :: (a) #

mappend :: (a) -> (a) -> (a) #

mconcat :: [(a)] -> (a) #

Monoid [a]

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Monoid a => Monoid (Op a b)

mempty @(Op a b) without newtypes is mempty @(b->a) = _ -> mempty.

mempty :: Op a b
mempty = Op _ -> mempty
Instance details

Defined in Data.Functor.Contravariant

Methods

mempty :: Op a b #

mappend :: Op a b -> Op a b -> Op a b #

mconcat :: [Op a b] -> Op a b #

Monoid (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

mempty :: Proxy s #

mappend :: Proxy s -> Proxy s -> Proxy s #

mconcat :: [Proxy s] -> Proxy s #

Monoid a => Monoid (ST s a)

Since: base-4.11.0.0

Instance details

Defined in GHC.ST

Methods

mempty :: ST s a #

mappend :: ST s a -> ST s a -> ST s a #

mconcat :: [ST s a] -> ST s a #

(Monoid a, Monoid b) => Monoid (a, b)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid b => Monoid (a -> b)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

Monoid a => Monoid (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

(Applicative f, Monoid a) => Monoid (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mempty :: Ap f a #

mappend :: Ap f a -> Ap f a -> Ap f a #

mconcat :: [Ap f a] -> Ap f a #

Alternative f => Monoid (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

(Monoid (f a), Monoid (g a)) => Monoid (Product f g a)

Since: base-4.16.0.0

Instance details

Defined in Data.Functor.Product

Methods

mempty :: Product f g a #

mappend :: Product f g a -> Product f g a -> Product f g a #

mconcat :: [Product f g a] -> Product f g a #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

Monoid (f (g a)) => Monoid (Compose f g a)

Since: base-4.16.0.0

Instance details

Defined in Data.Functor.Compose

Methods

mempty :: Compose f g a #

mappend :: Compose f g a -> Compose f g a -> Compose f g a #

mconcat :: [Compose f g a] -> Compose f g a #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

newtype Alt (f :: k -> Type) (a :: k) #

Monoid under <|>.

>>> getAlt (Alt (Just 12) <> Alt (Just 24))
Just 12
>>> getAlt $ Alt Nothing <> Alt (Just 24)
Just 24

Since: base-4.8.0.0

Constructors

Alt 

Fields

Instances

Instances details
Generic1 (Alt f :: k -> Type) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 (Alt f) :: k -> Type #

Methods

from1 :: forall (a :: k0). Alt f a -> Rep1 (Alt f) a #

to1 :: forall (a :: k0). Rep1 (Alt f) a -> Alt f a #

Foldable f => Foldable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Alt f m -> m #

foldMap :: Monoid m => (a -> m) -> Alt f a -> m #

foldMap' :: Monoid m => (a -> m) -> Alt f a -> m #

foldr :: (a -> b -> b) -> b -> Alt f a -> b #

foldr' :: (a -> b -> b) -> b -> Alt f a -> b #

foldl :: (b -> a -> b) -> b -> Alt f a -> b #

foldl' :: (b -> a -> b) -> b -> Alt f a -> b #

foldr1 :: (a -> a -> a) -> Alt f a -> a #

foldl1 :: (a -> a -> a) -> Alt f a -> a #

toList :: Alt f a -> [a] #

null :: Alt f a -> Bool #

length :: Alt f a -> Int #

elem :: Eq a => a -> Alt f a -> Bool #

maximum :: Ord a => Alt f a -> a #

minimum :: Ord a => Alt f a -> a #

sum :: Num a => Alt f a -> a #

product :: Num a => Alt f a -> a #

Foldable1 f => Foldable1 (Alt f)

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Alt f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Alt f a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Alt f a -> m #

toNonEmpty :: Alt f a -> NonEmpty a #

maximum :: Ord a => Alt f a -> a #

minimum :: Ord a => Alt f a -> a #

head :: Alt f a -> a #

last :: Alt f a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Alt f a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Alt f a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Alt f a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Alt f a -> b #

Contravariant f => Contravariant (Alt f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Alt f a -> Alt f a' #

(>$) :: b -> Alt f b -> Alt f a #

Traversable f => Traversable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) #

sequenceA :: Applicative f0 => Alt f (f0 a) -> f0 (Alt f a) #

mapM :: Monad m => (a -> m b) -> Alt f a -> m (Alt f b) #

sequence :: Monad m => Alt f (m a) -> m (Alt f a) #

Alternative f => Alternative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

empty :: Alt f a #

(<|>) :: Alt f a -> Alt f a -> Alt f a #

some :: Alt f a -> Alt f [a] #

many :: Alt f a -> Alt f [a] #

Applicative f => Applicative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Alt f a #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

(*>) :: Alt f a -> Alt f b -> Alt f b #

(<*) :: Alt f a -> Alt f b -> Alt f a #

Functor f => Functor (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

Monad f => Monad (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b #

(>>) :: Alt f a -> Alt f b -> Alt f b #

return :: a -> Alt f a #

MonadPlus f => MonadPlus (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mzero :: Alt f a #

mplus :: Alt f a -> Alt f a -> Alt f a #

Alternative f => Monoid (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

Alternative f => Semigroup (Alt f a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a #

sconcat :: NonEmpty (Alt f a) -> Alt f a #

stimes :: Integral b => b -> Alt f a -> Alt f a #

Enum (f a) => Enum (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

succ :: Alt f a -> Alt f a #

pred :: Alt f a -> Alt f a #

toEnum :: Int -> Alt f a #

fromEnum :: Alt f a -> Int #

enumFrom :: Alt f a -> [Alt f a] #

enumFromThen :: Alt f a -> Alt f a -> [Alt f a] #

enumFromTo :: Alt f a -> Alt f a -> [Alt f a] #

enumFromThenTo :: Alt f a -> Alt f a -> Alt f a -> [Alt f a] #

Generic (Alt f a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Alt f a) :: Type -> Type #

Methods

from :: Alt f a -> Rep (Alt f a) x #

to :: Rep (Alt f a) x -> Alt f a #

Num (f a) => Num (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Alt f a -> Alt f a -> Alt f a #

(-) :: Alt f a -> Alt f a -> Alt f a #

(*) :: Alt f a -> Alt f a -> Alt f a #

negate :: Alt f a -> Alt f a #

abs :: Alt f a -> Alt f a #

signum :: Alt f a -> Alt f a #

fromInteger :: Integer -> Alt f a #

Read (f a) => Read (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

readsPrec :: Int -> ReadS (Alt f a) #

readList :: ReadS [Alt f a] #

readPrec :: ReadPrec (Alt f a) #

readListPrec :: ReadPrec [Alt f a] #

Show (f a) => Show (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Alt f a -> ShowS #

show :: Alt f a -> String #

showList :: [Alt f a] -> ShowS #

Eq (f a) => Eq (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Alt f a -> Alt f a -> Bool #

(/=) :: Alt f a -> Alt f a -> Bool #

Ord (f a) => Ord (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Alt f a -> Alt f a -> Ordering #

(<) :: Alt f a -> Alt f a -> Bool #

(<=) :: Alt f a -> Alt f a -> Bool #

(>) :: Alt f a -> Alt f a -> Bool #

(>=) :: Alt f a -> Alt f a -> Bool #

max :: Alt f a -> Alt f a -> Alt f a #

min :: Alt f a -> Alt f a -> Alt f a #

type Rep1 (Alt f :: k -> Type)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 (Alt f :: k -> Type) = D1 ('MetaData "Alt" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
type Rep (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Alt f a) = D1 ('MetaData "Alt" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

newtype All #

Boolean monoid under conjunction (&&).

>>> getAll (All True <> mempty <> All False)
False
>>> getAll (mconcat (map (\x -> All (even x)) [2,4,6,7,8]))
False

Constructors

All 

Fields

Instances

Instances details
Monoid All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Semigroup All

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Bounded All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: All #

maxBound :: All #

Generic All 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep All :: Type -> Type #

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Read All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Eq All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Ord All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: All -> All -> Ordering #

(<) :: All -> All -> Bool #

(<=) :: All -> All -> Bool #

(>) :: All -> All -> Bool #

(>=) :: All -> All -> Bool #

max :: All -> All -> All #

min :: All -> All -> All #

type Rep All

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep All = D1 ('MetaData "All" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "All" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAll") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))

newtype Endo a #

The monoid of endomorphisms under composition.

>>> let computation = Endo ("Hello, " ++) <> Endo (++ "!")
>>> appEndo computation "Haskell"
"Hello, Haskell!"

Constructors

Endo 

Fields

Instances

Instances details
Monoid (Endo a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Semigroup (Endo a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Generic (Endo a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Endo a) :: Type -> Type #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

type Rep (Endo a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Endo a) = D1 ('MetaData "Endo" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Endo" 'PrefixI 'True) (S1 ('MetaSel ('Just "appEndo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a -> a))))

newtype Dual a #

The dual of a Monoid, obtained by swapping the arguments of mappend.

>>> getDual (mappend (Dual "Hello") (Dual "World"))
"WorldHello"

Constructors

Dual 

Fields

Instances

Instances details
Foldable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldMap' :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Foldable1 Dual

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Dual m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Dual a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Dual a -> m #

toNonEmpty :: Dual a -> NonEmpty a #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

head :: Dual a -> a #

last :: Dual a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Dual a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Dual a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Dual a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Dual a -> b #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Applicative Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

liftA2 :: (a -> b -> c) -> Dual a -> Dual b -> Dual c #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Functor Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Monad Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

Generic1 Dual 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Dual :: k -> Type #

Methods

from1 :: forall (a :: k). Dual a -> Rep1 Dual a #

to1 :: forall (a :: k). Rep1 Dual a -> Dual a #

Monoid a => Monoid (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Semigroup a => Semigroup (Dual a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Bounded a => Bounded (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Dual a #

maxBound :: Dual a #

Generic (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Dual a) :: Type -> Type #

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Read a => Read (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Eq a => Eq (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Ord a => Ord (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Dual a -> Dual a -> Ordering #

(<) :: Dual a -> Dual a -> Bool #

(<=) :: Dual a -> Dual a -> Bool #

(>) :: Dual a -> Dual a -> Bool #

(>=) :: Dual a -> Dual a -> Bool #

max :: Dual a -> Dual a -> Dual a #

min :: Dual a -> Dual a -> Dual a #

type Rep1 Dual

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
type Rep (Dual a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Dual a) = D1 ('MetaData "Dual" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

newtype Ap (f :: k -> Type) (a :: k) #

This data type witnesses the lifting of a Monoid into an Applicative pointwise.

Since: base-4.12.0.0

Constructors

Ap 

Fields

Instances

Instances details
Generic1 (Ap f :: k -> Type) 
Instance details

Defined in Data.Monoid

Associated Types

type Rep1 (Ap f) :: k -> Type #

Methods

from1 :: forall (a :: k0). Ap f a -> Rep1 (Ap f) a #

to1 :: forall (a :: k0). Rep1 (Ap f) a -> Ap f a #

MonadFail f => MonadFail (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fail :: String -> Ap f a #

Foldable f => Foldable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m #

foldMap' :: Monoid m => (a -> m) -> Ap f a -> m #

foldr :: (a -> b -> b) -> b -> Ap f a -> b #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b #

foldl :: (b -> a -> b) -> b -> Ap f a -> b #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b #

foldr1 :: (a -> a -> a) -> Ap f a -> a #

foldl1 :: (a -> a -> a) -> Ap f a -> a #

toList :: Ap f a -> [a] #

null :: Ap f a -> Bool #

length :: Ap f a -> Int #

elem :: Eq a => a -> Ap f a -> Bool #

maximum :: Ord a => Ap f a -> a #

minimum :: Ord a => Ap f a -> a #

sum :: Num a => Ap f a -> a #

product :: Num a => Ap f a -> a #

Foldable1 f => Foldable1 (Ap f)

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Ap f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Ap f a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Ap f a -> m #

toNonEmpty :: Ap f a -> NonEmpty a #

maximum :: Ord a => Ap f a -> a #

minimum :: Ord a => Ap f a -> a #

head :: Ap f a -> a #

last :: Ap f a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Ap f a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Ap f a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Ap f a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Ap f a -> b #

Traversable f => Traversable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) #

Alternative f => Alternative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

empty :: Ap f a #

(<|>) :: Ap f a -> Ap f a -> Ap f a #

some :: Ap f a -> Ap f [a] #

many :: Ap f a -> Ap f [a] #

Applicative f => Applicative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Ap f a #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

(*>) :: Ap f a -> Ap f b -> Ap f b #

(<*) :: Ap f a -> Ap f b -> Ap f a #

Functor f => Functor (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b #

(<$) :: a -> Ap f b -> Ap f a #

Monad f => Monad (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b #

(>>) :: Ap f a -> Ap f b -> Ap f b #

return :: a -> Ap f a #

MonadPlus f => MonadPlus (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mzero :: Ap f a #

mplus :: Ap f a -> Ap f a -> Ap f a #

(Applicative f, Monoid a) => Monoid (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mempty :: Ap f a #

mappend :: Ap f a -> Ap f a -> Ap f a #

mconcat :: [Ap f a] -> Ap f a #

(Applicative f, Semigroup a) => Semigroup (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a #

sconcat :: NonEmpty (Ap f a) -> Ap f a #

stimes :: Integral b => b -> Ap f a -> Ap f a #

(Applicative f, Bounded a) => Bounded (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

minBound :: Ap f a #

maxBound :: Ap f a #

Enum (f a) => Enum (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

succ :: Ap f a -> Ap f a #

pred :: Ap f a -> Ap f a #

toEnum :: Int -> Ap f a #

fromEnum :: Ap f a -> Int #

enumFrom :: Ap f a -> [Ap f a] #

enumFromThen :: Ap f a -> Ap f a -> [Ap f a] #

enumFromTo :: Ap f a -> Ap f a -> [Ap f a] #

enumFromThenTo :: Ap f a -> Ap f a -> Ap f a -> [Ap f a] #

Generic (Ap f a) 
Instance details

Defined in Data.Monoid

Associated Types

type Rep (Ap f a) :: Type -> Type #

Methods

from :: Ap f a -> Rep (Ap f a) x #

to :: Rep (Ap f a) x -> Ap f a #

(Applicative f, Num a) => Num (Ap f a)

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a #

(-) :: Ap f a -> Ap f a -> Ap f a #

(*) :: Ap f a -> Ap f a -> Ap f a #

negate :: Ap f a -> Ap f a #

abs :: Ap f a -> Ap f a #

signum :: Ap f a -> Ap f a #

fromInteger :: Integer -> Ap f a #

Read (f a) => Read (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

readsPrec :: Int -> ReadS (Ap f a) #

readList :: ReadS [Ap f a] #

readPrec :: ReadPrec (Ap f a) #

readListPrec :: ReadPrec [Ap f a] #

Show (f a) => Show (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Ap f a -> ShowS #

show :: Ap f a -> String #

showList :: [Ap f a] -> ShowS #

Eq (f a) => Eq (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(==) :: Ap f a -> Ap f a -> Bool #

(/=) :: Ap f a -> Ap f a -> Bool #

Ord (f a) => Ord (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

compare :: Ap f a -> Ap f a -> Ordering #

(<) :: Ap f a -> Ap f a -> Bool #

(<=) :: Ap f a -> Ap f a -> Bool #

(>) :: Ap f a -> Ap f a -> Bool #

(>=) :: Ap f a -> Ap f a -> Bool #

max :: Ap f a -> Ap f a -> Ap f a #

min :: Ap f a -> Ap f a -> Ap f a #

type Rep1 (Ap f :: k -> Type)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

type Rep1 (Ap f :: k -> Type) = D1 ('MetaData "Ap" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
type Rep (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

type Rep (Ap f a) = D1 ('MetaData "Ap" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

(<>) :: Semigroup a => a -> a -> a infixr 6 #

An associative operation.

>>> [1,2,3] <> [4,5,6]
[1,2,3,4,5,6]