{-# LANGUAGE NoImplicitPrelude, UnicodeSyntax #-}

module Data.List.Unicode
    ( ()
    , (), (), (), ()
    , (), (), (), ()
    , ()
    , 𝜀
    ) where

-------------------------------------------------------------------------------
-- Imports
-------------------------------------------------------------------------------

-- from base:
import Prelude       ( Int )
import Data.Bool     ( Bool )
import Data.Eq       ( Eq )
import Data.Function ( flip )
import Data.List     ( (++), elem, notElem, union, (\\), intersect, (!!) )


-------------------------------------------------------------------------------
-- Fixities
-------------------------------------------------------------------------------

infix  4 
infix  4 
infix  4 
infix  4 
infixr 5 
infixl 6 
infixr 6 
infixl 9 
infixl 9 
infixl 9 


-------------------------------------------------------------------------------
-- Symbols
-------------------------------------------------------------------------------

{-|
(⧺) = ('++')

U+29FA, DOUBLE PLUS
-}
()  [α]  [α]  [α]
() = (++)
{-# INLINE () #-}

{-|
(∈) = 'elem'

U+2208, ELEMENT OF
-}
()  Eq α  α  [α]  Bool
() = elem
{-# INLINE () #-}

{-|
(∋) = 'flip' (∈)

U+220B, CONTAINS AS MEMBER
-}
()  Eq α  [α]  α  Bool
() = flip ()
{-# INLINE () #-}

{-|
(∉) = 'notElem'

U+2209, NOT AN ELEMENT OF
-}
()  Eq α  α  [α]  Bool
() = notElem
{-# INLINE () #-}

{-|
(∌) = 'flip' (∉)

U+220C, DOES NOT CONTAIN AS MEMBER
-}
()  Eq α  [α]  α  Bool
() = flip ()
{-# INLINE () #-}

{-|
(∪) = 'union'

U+222A, UNION
-}
()  Eq α  [α]  [α]  [α]
() = union
{-# INLINE () #-}

{-|
(∖) = ('\\')

U+2216, SET MINUS
-}
()  Eq α  [α]  [α]  [α]
() = (\\)
{-# INLINE () #-}

{-|
Symmetric difference

a ∆ b = (a ∖ b) ∪ (b ∖ a)

U+2206, INCREMENT
-}
()  Eq α  [α]  [α]  [α]
a  b = (a  b)  (b  a)
{-# INLINE () #-}

{-|
(∩) = 'intersect'

U+2229, INTERSECTION
-}
()  Eq α  [α]  [α]  [α]
() = intersect
{-# INLINE () #-}

{-|
(‼) = ('!!')

U+203C, DOUBLE EXCLAMATION MARK
-}
()  [α]  Int  α
() = (!!)
{-# INLINE () #-}

{-|
Epsilon, the empty word (or list)

(ε) = []

(U+3B5, GREEK SMALL LETTER EPSILON)
-}
𝜀  [a]
𝜀 = []