basic-prelude-0.3.11: An enhanced core prelude; a common foundation for alternate preludes.

Safe HaskellNone
LanguageHaskell98

CorePrelude

Contents

Synopsis

Standard

Operators

($) :: (a -> b) -> a -> b infixr 0

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

    f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

($!) :: (a -> b) -> a -> b infixr 0

Strict (call-by-value) application, defined in terms of seq.

(&&) :: Bool -> Bool -> Bool infixr 3

Boolean "and"

(||) :: Bool -> Bool -> Bool infixr 2

Boolean "or"

(.) :: Category k cat => forall b c a. cat b c -> cat a b -> cat a c

morphism composition

Functions

not :: Bool -> Bool

Boolean "not"

otherwise :: Bool

otherwise is defined as the value True. It helps to make guards more readable. eg.

 f x | x < 0     = ...
     | otherwise = ...

fst :: (a, b) -> a

Extract the first component of a pair.

snd :: (a, b) -> b

Extract the second component of a pair.

id :: Category k cat => forall a. cat a a

the identity morphism

maybe :: b -> (a -> b) -> Maybe a -> b

The maybe function takes a default value, a function, and a Maybe value. If the Maybe value is Nothing, the function returns the default value. Otherwise, it applies the function to the value inside the Just and returns the result.

either :: (a -> c) -> (b -> c) -> Either a b -> c

Case analysis for the Either type. If the value is Left a, apply the first function to a; if it is Right b, apply the second function to b.

flip :: (a -> b -> c) -> b -> a -> c

flip f takes its (first) two arguments in the reverse order of f.

const :: a -> b -> a

Constant function.

error :: [Char] -> a

error stops execution and displays an error message.

putStr :: MonadIO m => Text -> m () Source

putStrLn :: MonadIO m => Text -> m () Source

print :: (MonadIO m, Show a) => a -> m () Source

odd :: Integral a => a -> Bool

even :: Integral a => a -> Bool

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry converts a curried function to a function on pairs.

curry :: ((a, b) -> c) -> a -> b -> c

curry converts an uncurried function to a curried function.

swap :: (a, b) -> (b, a)

Swap the components of a pair.

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f yields the result of applying f until p holds.

asTypeOf :: a -> a -> a

asTypeOf is a type-restricted version of const. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the second.

undefined :: a

A special case of error. It is expected that compilers will recognize this and insert error messages which are more appropriate to the context in which undefined appears.

seq :: a -> b -> b

Evaluates its first argument to head normal form, and then returns its second argument as the result.

Type classes

class Eq a => Ord a where

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord. The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.

Minimal complete definition: either compare or <=. Using compare can be more efficient for complex types.

Minimal complete definition

compare | (<=)

Methods

compare :: a -> a -> Ordering

(<) :: a -> a -> Bool infix 4

(>=) :: a -> a -> Bool infix 4

(>) :: a -> a -> Bool infix 4

(<=) :: a -> a -> Bool infix 4

max :: a -> a -> a

min :: a -> a -> a

Instances

Ord Bool 
Ord Char 
Ord Double 
Ord Float 
Ord Int 
Ord Int8 
Ord Int16 
Ord Int32 
Ord Int64 
Ord Integer 
Ord Ordering 
Ord Word 
Ord Word8 
Ord Word16 
Ord Word32 
Ord Word64 
Ord () 
Ord ThreadId 
Ord BlockReason 
Ord ThreadStatus 
Ord AsyncException 
Ord ArrayException 
Ord ExitCode 
Ord ErrorCall 
Ord ArithException 
Ord All 
Ord Any 
Ord Arity 
Ord Fixity 
Ord Associativity 
Ord TypeRep 
Ord TyCon 
Ord ByteString 
Ord ByteString 
Ord IntSet 
Ord Root 
Ord Text 
Ord FilePath 
Ord Text 
Ord a => Ord [a] 
Integral a => Ord (Ratio a) 
Ord (U1 p) 
Ord p => Ord (Par1 p) 
Ord a => Ord (ZipList a) 
Ord a => Ord (Dual a) 
Ord a => Ord (Sum a) 
Ord a => Ord (Product a) 
Ord a => Ord (First a) 
Ord a => Ord (Last a) 
Ord a => Ord (Down a) 
Ord a => Ord (Maybe a) 
Ord a => Ord (IntMap a) 
Ord a => Ord (Set a) 
Ord a => Ord (Seq a) 
Ord a => Ord (ViewL a) 
Ord a => Ord (ViewR a) 
(Unbox a, Ord a) => Ord (Vector a) 
Ord a => Ord (Vector a) 
(Storable a, Ord a) => Ord (Vector a) 
(Prim a, Ord a) => Ord (Vector a) 
(Ord a, Ord b) => Ord (Either a b) 
Ord (f p) => Ord (Rec1 f p) 
(Ord a, Ord b) => Ord (a, b) 
(Ord k, Ord v) => Ord (Map k v) 
Ord a => Ord (Stream Id a) 
Ord c => Ord (K1 i c p) 
(Ord (f p), Ord (g p)) => Ord ((:+:) f g p) 
(Ord (f p), Ord (g p)) => Ord ((:*:) f g p) 
Ord (f (g p)) => Ord ((:.:) f g p) 
(Ord a, Ord b, Ord c) => Ord (a, b, c) 
Ord (Coercion k a b) 
Ord ((:~:) k a b) 
Ord (f p) => Ord (M1 i c f p) 
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) 
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Eq a where

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

Minimal complete definition: either == or /=.

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4

(/=) :: a -> a -> Bool infix 4

Instances

Eq Bool 
Eq Char 
Eq Double 
Eq Float 
Eq Int 
Eq Int8 
Eq Int16 
Eq Int32 
Eq Int64 
Eq Integer 
Eq Ordering 
Eq Word 
Eq Word8 
Eq Word16 
Eq Word32 
Eq Word64 
Eq () 
Eq SpecConstrAnnotation 
Eq ThreadId 
Eq BlockReason 
Eq ThreadStatus 
Eq AsyncException 
Eq ArrayException 
Eq ExitCode 
Eq IOErrorType 
Eq MaskingState 
Eq IOException 
Eq ErrorCall 
Eq ArithException 
Eq All 
Eq Any 
Eq Arity 
Eq Fixity 
Eq Associativity 
Eq TypeRep 
Eq TyCon 
Eq ByteString 
Eq ByteString 
Eq IntSet 
Eq Root 
Eq Text 
Eq FilePath 
Eq Text 
Eq UnicodeException 
Eq DecoderState 
Eq CodePoint 
Eq a => Eq [a] 
Eq a => Eq (Ratio a) 
Eq (U1 p) 
Eq p => Eq (Par1 p) 
Eq a => Eq (Complex a) 
Eq a => Eq (ZipList a) 
Eq (TVar a) 
Eq a => Eq (Dual a) 
Eq a => Eq (Sum a) 
Eq a => Eq (Product a) 
Eq a => Eq (First a) 
Eq a => Eq (Last a) 
Eq a => Eq (Down a) 
Eq a => Eq (Maybe a) 
Eq a => Eq (IntMap a) 
Eq a => Eq (Set a) 
Eq a => Eq (Seq a) 
Eq a => Eq (ViewL a) 
Eq a => Eq (ViewR a) 
(Unbox a, Eq a) => Eq (Vector a) 
Eq a => Eq (Vector a) 
(Storable a, Eq a) => Eq (Vector a) 
(Hashable a, Eq a) => Eq (HashSet a) 
(Prim a, Eq a) => Eq (Vector a) 
(Eq a, Eq b) => Eq (Either a b) 
Eq (f p) => Eq (Rec1 f p) 
(Eq a, Eq b) => Eq (a, b) 
(Eq k, Eq a) => Eq (Map k a) 
Eq a => Eq (Stream Id a) 
(Eq k, Eq v) => Eq (Leaf k v) 
(Eq k, Eq v) => Eq (HashMap k v) 
Eq (m a) => Eq (NonGreedy m a) 
(Eq a, Eq b) => Eq ((:&) a b) 
Eq c => Eq (K1 i c p) 
(Eq (f p), Eq (g p)) => Eq ((:+:) f g p) 
(Eq (f p), Eq (g p)) => Eq ((:*:) f g p) 
Eq (f (g p)) => Eq ((:.:) f g p) 
(Eq a, Eq b, Eq c) => Eq (a, b, c) 
Eq (Coercion k a b) 
Eq ((:~:) k a b) 
Eq (f p) => Eq (M1 i c f p) 
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Bounded a where

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Methods

minBound :: a

maxBound :: a

Instances

Bounded Bool 
Bounded Char 
Bounded Int 
Bounded Int8 
Bounded Int16 
Bounded Int32 
Bounded Int64 
Bounded Ordering 
Bounded Word 
Bounded Word8 
Bounded Word16 
Bounded Word32 
Bounded Word64 
Bounded () 
Bounded All 
Bounded Any 
Bounded a => Bounded (Dual a) 
Bounded a => Bounded (Sum a) 
Bounded a => Bounded (Product a) 
(Bounded a, Bounded b) => Bounded (a, b) 
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) 
Coercible k a b => Bounded (Coercion k a b) 
(~) k a b => Bounded ((:~:) k a b) 
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Enum a where

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a

Convert from an Int.

fromEnum :: a -> Int

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a]

Used in Haskell's translation of [n..].

enumFromThen :: a -> a -> [a]

Used in Haskell's translation of [n,n'..].

enumFromTo :: a -> a -> [a]

Used in Haskell's translation of [n..m].

enumFromThenTo :: a -> a -> a -> [a]

Used in Haskell's translation of [n,n'..m].

class Show a

Conversion of values to readable Strings.

Minimal complete definition: showsPrec or show.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Instances

Show Bool 
Show Char 
Show Double 
Show Float 
Show Int 
Show Int8 
Show Int16 
Show Int32 
Show Int64 
Show Integer 
Show Ordering 
Show Word 
Show Word8 
Show Word16 
Show Word32 
Show Word64 
Show () 
Show ThreadId 
Show BlockReason 
Show ThreadStatus 
Show BlockedIndefinitelyOnMVar 
Show BlockedIndefinitelyOnSTM 
Show Deadlock 
Show AssertionFailed 
Show SomeAsyncException 
Show AsyncException 
Show ArrayException 
Show ExitCode 
Show IOErrorType 
Show MaskingState 
Show IOException 
Show ErrorCall 
Show ArithException 
Show All 
Show Any 
Show Arity 
Show Fixity 
Show Associativity 
Show TypeRep 
Show TyCon 
Show SomeException 
Show ByteString 
Show ByteString 
Show IntSet 
Show Root 
Show Text 
Show FilePath 
Show Text 
Show UnicodeException 
Show DecoderState 
Show CodePoint 
Show Decoding 
Show a => Show [a] 
(Integral a, Show a) => Show (Ratio a) 
Show (U1 p) 
Show p => Show (Par1 p) 
Show a => Show (Complex a) 
Show a => Show (ZipList a) 
Show a => Show (Dual a) 
Show a => Show (Sum a) 
Show a => Show (Product a) 
Show a => Show (First a) 
Show a => Show (Last a) 
Show a => Show (Down a) 
Show a => Show (Maybe a) 
Show a => Show (IntMap a) 
Show a => Show (Set a) 
Show a => Show (Seq a) 
Show a => Show (ViewL a) 
Show a => Show (ViewR a) 
(Show a, Unbox a) => Show (Vector a) 
Show (Rules a) 
Show a => Show (Vector a) 
(Show a, Storable a) => Show (Vector a) 
Show a => Show (HashSet a) 
(Show a, Prim a) => Show (Vector a) 
(Show a, Show b) => Show (Either a b) 
Show (f p) => Show (Rec1 f p) 
(Show a, Show b) => Show (a, b) 
Show (ST s a) 
(Show k, Show a) => Show (Map k a) 
(Show k, Show v) => Show (HashMap k v) 
Show (m a) => Show (NonGreedy m a) 
(Show a, Show b) => Show ((:&) a b) 
Show c => Show (K1 i c p) 
(Show (f p), Show (g p)) => Show ((:+:) f g p) 
(Show (f p), Show (g p)) => Show ((:*:) f g p) 
Show (f (g p)) => Show ((:.:) f g p) 
(Show a, Show b, Show c) => Show (a, b, c) 
Show (Coercion k a b) 
Show ((:~:) k a b) 
Show (f p) => Show (M1 i c f p) 
(Show a, Show b, Show c, Show d) => Show (a, b, c, d) 
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) 
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Read a

Parsing of Strings, producing values.

Minimal complete definition: readsPrec (or, for GHC only, readPrec)

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 2010 is equivalent to

instance (Read a) => Read (Tree a) where

        readsPrec d r =  readParen (d > app_prec)
                         (\r -> [(Leaf m,t) |
                                 ("Leaf",s) <- lex r,
                                 (m,t) <- readsPrec (app_prec+1) s]) r

                      ++ readParen (d > up_prec)
                         (\r -> [(u:^:v,w) |
                                 (u,s) <- readsPrec (up_prec+1) r,
                                 (":^:",t) <- lex s,
                                 (v,w) <- readsPrec (up_prec+1) t]) r

          where app_prec = 10
                up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

instance (Read a) => Read (Tree a) where

        readPrec = parens $ (prec app_prec $ do
                                 Ident "Leaf" <- lexP
                                 m <- step readPrec
                                 return (Leaf m))

                     +++ (prec up_prec $ do
                                 u <- step readPrec
                                 Symbol ":^:" <- lexP
                                 v <- step readPrec
                                 return (u :^: v))

          where app_prec = 10
                up_prec = 5

        readListPrec = readListPrecDefault

Minimal complete definition

readsPrec | readPrec

Instances

Read Bool 
Read Char 
Read Double 
Read Float 
Read Int 
Read Int8 
Read Int16 
Read Int32 
Read Int64 
Read Integer 
Read Ordering 
Read Word 
Read Word8 
Read Word16 
Read Word32 
Read Word64 
Read () 
Read ExitCode 
Read All 
Read Any 
Read Arity 
Read Fixity 
Read Associativity 
Read Lexeme 
Read ByteString 
Read ByteString 
Read IntSet 
Read Text 
Read Text 
Read a => Read [a] 
(Integral a, Read a) => Read (Ratio a) 
Read (U1 p) 
Read p => Read (Par1 p) 
Read a => Read (Complex a) 
Read a => Read (ZipList a) 
Read a => Read (Dual a) 
Read a => Read (Sum a) 
Read a => Read (Product a) 
Read a => Read (First a) 
Read a => Read (Last a) 
Read a => Read (Down a) 
Read a => Read (Maybe a) 
Read e => Read (IntMap e) 
(Read a, Ord a) => Read (Set a) 
Read a => Read (Seq a) 
Read a => Read (ViewL a) 
Read a => Read (ViewR a) 
(Read a, Unbox a) => Read (Vector a) 
Read a => Read (Vector a) 
(Read a, Storable a) => Read (Vector a) 
(Eq a, Hashable a, Read a) => Read (HashSet a) 
(Read a, Prim a) => Read (Vector a) 
(Read a, Read b) => Read (Either a b) 
Read (f p) => Read (Rec1 f p) 
(Read a, Read b) => Read (a, b) 
(Ix a, Read a, Read b) => Read (Array a b) 
(Ord k, Read k, Read e) => Read (Map k e) 
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) 
Read c => Read (K1 i c p) 
(Read (f p), Read (g p)) => Read ((:+:) f g p) 
(Read (f p), Read (g p)) => Read ((:*:) f g p) 
Read (f (g p)) => Read ((:.:) f g p) 
(Read a, Read b, Read c) => Read (a, b, c) 
Coercible k a b => Read (Coercion k a b) 
(~) k a b => Read ((:~:) k a b) 
Read (f p) => Read (M1 i c f p) 
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) 
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) 
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Functor f where

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

fmap id  ==  id
fmap (f . g)  ==  fmap f . fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b

(<$) :: a -> f b -> f a infixl 4

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

class Monad m where

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Minimal complete definition: >>= and return.

Instances of Monad should satisfy the following laws:

return a >>= k  ==  k a
m >>= return  ==  m
m >>= (\x -> k x >>= h)  ==  (m >>= k) >>= h

Instances of both Monad and Functor should additionally satisfy the law:

fmap f xs  ==  xs >>= return . f

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=), return

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: m a -> m b -> m b infixl 1

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m a

Inject a value into the monadic type.

fail :: String -> m a

Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.

Instances

Monad [] 
Monad IO 
Monad P 
Monad STM 
Monad ReadP 
Monad Maybe 
Monad Id 
Monad Seq 
Monad Identity 
Monad Vector 
Monad ((->) r) 
Monad (Either e) 
Monad (ST s) 
Monad m => Monad (WrappedMonad m) 
Monad (ST s) 
ArrowApply a => Monad (ArrowMonad a) 
Monad (State s) 
Monad m => Monad (MaybeT m) 
Monad m => Monad (ListT m) 
Monad m => Monad (IdentityT m) 
(Monoid w, Monad m) => Monad (WriterT w m) 
(Monoid w, Monad m) => Monad (WriterT w m) 
Monad m => Monad (StateT s m) 
Monad m => Monad (StateT s m) 
Monad m => Monad (ReaderT r m) 
(Monad m, Error e) => Monad (ErrorT e m) 
(Monoid w, Monad m) => Monad (RWST r w s m) 
(Monoid w, Monad m) => Monad (RWST r w s m) 

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1

Same as >>=, but with the arguments interchanged.

class IsString a where

Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).

Methods

fromString :: String -> a

Numeric type classes

class Num a where

Basic numeric class.

Minimal complete definition: all except negate or (-)

Minimal complete definition

(+), (*), abs, signum, fromInteger, (negate | (-))

Methods

(+) :: a -> a -> a infixl 6

(*) :: a -> a -> a infixl 7

(-) :: a -> a -> a infixl 6

negate :: a -> a

Unary negation.

abs :: a -> a

Absolute value.

signum :: a -> a

Sign of a number. The functions abs and signum should satisfy the law:

abs x * signum x == x

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> a

Conversion from an Integer. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer, so such literals have type (Num a) => a.

Instances

Num Double 
Num Float 
Num Int 
Num Int8 
Num Int16 
Num Int32 
Num Int64 
Num Integer 
Num Word 
Num Word8 
Num Word16 
Num Word32 
Num Word64 
Num DecoderState 
Num CodePoint 
Integral a => Num (Ratio a) 
RealFloat a => Num (Complex a) 
Num a => Num (Sum a) 
Num a => Num (Product a) 

class (Num a, Ord a) => Real a where

Methods

toRational :: a -> Rational

the rational equivalent of its real argument with full precision

class (Real a, Enum a) => Integral a where

Integral numbers, supporting integer division.

Minimal complete definition: quotRem and toInteger

Minimal complete definition

quotRem, toInteger

Methods

quot :: a -> a -> a infixl 7

integer division truncated toward zero

rem :: a -> a -> a infixl 7

integer remainder, satisfying

(x `quot` y)*y + (x `rem` y) == x

div :: a -> a -> a infixl 7

integer division truncated toward negative infinity

mod :: a -> a -> a infixl 7

integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

quotRem :: a -> a -> (a, a)

simultaneous quot and rem

divMod :: a -> a -> (a, a)

simultaneous div and mod

toInteger :: a -> Integer

conversion to Integer

class Num a => Fractional a where

Fractional numbers, supporting real division.

Minimal complete definition: fromRational and (recip or (/))

Minimal complete definition

fromRational, (recip | (/))

Methods

(/) :: a -> a -> a infixl 7

fractional division

recip :: a -> a

reciprocal fraction

fromRational :: Rational -> a

Conversion from a Rational (that is Ratio Integer). A floating literal stands for an application of fromRational to a value of type Rational, so such literals have type (Fractional a) => a.

class Fractional a => Floating a where

Trigonometric and hyperbolic functions and related functions.

Minimal complete definition: pi, exp, log, sin, cos, sinh, cosh, asin, acos, atan, asinh, acosh and atanh

Minimal complete definition

pi, exp, log, sin, cos, asin, atan, acos, sinh, cosh, asinh, atanh, acosh

Methods

pi :: a

exp :: a -> a

sqrt :: a -> a

log :: a -> a

(**) :: a -> a -> a infixr 8

logBase :: a -> a -> a

sin :: a -> a

tan :: a -> a

cos :: a -> a

asin :: a -> a

atan :: a -> a

acos :: a -> a

sinh :: a -> a

tanh :: a -> a

cosh :: a -> a

asinh :: a -> a

atanh :: a -> a

acosh :: a -> a

class (Real a, Fractional a) => RealFrac a where

Extracting components of fractions.

Minimal complete definition: properFraction

Minimal complete definition

properFraction

Methods

properFraction :: Integral b => a -> (b, a)

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.

truncate :: Integral b => a -> b

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> b

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> b

ceiling x returns the least integer not less than x

floor :: Integral b => a -> b

floor x returns the greatest integer not greater than x

class (RealFrac a, Floating a) => RealFloat a where

Efficient, machine-independent access to the components of a floating-point number.

Minimal complete definition: all except exponent, significand, scaleFloat and atan2

Methods

floatRadix :: a -> Integer

a constant function, returning the radix of the representation (often 2)

floatDigits :: a -> Int

a constant function, returning the number of digits of floatRadix in the significand

floatRange :: a -> (Int, Int)

a constant function, returning the lowest and highest values the exponent may assume

decodeFloat :: a -> (Integer, Int)

The function decodeFloat applied to a real floating-point number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to m*b^^n, where b is the floating-point radix, and furthermore, either m and n are both zero or else b^(d-1) <= abs m < b^d, where d is the value of floatDigits x. In particular, decodeFloat 0 = (0,0). If the type contains a negative zero, also decodeFloat (-0.0) = (0,0). The result of decodeFloat x is unspecified if either of isNaN x or isInfinite x is True.

encodeFloat :: Integer -> Int -> a

encodeFloat performs the inverse of decodeFloat in the sense that for finite x with the exception of -0.0, uncurry encodeFloat (decodeFloat x) = x. encodeFloat m n is one of the two closest representable floating-point numbers to m*b^^n (or ±Infinity if overflow occurs); usually the closer, but if m contains too many bits, the result may be rounded in the wrong direction.

exponent :: a -> Int

exponent corresponds to the second component of decodeFloat. exponent 0 = 0 and for finite nonzero x, exponent x = snd (decodeFloat x) + floatDigits x. If x is a finite floating-point number, it is equal in value to significand x * b ^^ exponent x, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.

significand :: a -> a

The first component of decodeFloat, scaled to lie in the open interval (-1,1), either 0.0 or of absolute value >= 1/b, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.

scaleFloat :: Int -> a -> a

multiplies a floating-point number by an integer power of the radix

isNaN :: a -> Bool

True if the argument is an IEEE "not-a-number" (NaN) value

isInfinite :: a -> Bool

True if the argument is an IEEE infinity or negative infinity

isDenormalized :: a -> Bool

True if the argument is too small to be represented in normalized format

isNegativeZero :: a -> Bool

True if the argument is an IEEE negative zero

isIEEE :: a -> Bool

True if the argument is an IEEE floating point number

atan2 :: a -> a -> a

a version of arctangent taking two real floating-point arguments. For real floating x and y, atan2 y x computes the angle (from the positive x-axis) of the vector from the origin to the point (x,y). atan2 y x returns a value in the range [-pi, pi]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. atan2 y 1, with y in a type that is RealFloat, should return the same value as atan y. A default definition of atan2 is provided, but implementors can provide a more accurate implementation.

Data types

data Maybe a :: * -> *

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a (represented as Just a), or it is empty (represented as Nothing). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error.

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing. A richer error monad can be built using the Either type.

Constructors

Nothing 
Just a 

Instances

Alternative Maybe 
Monad Maybe 
Functor Maybe 
MonadPlus Maybe 
Applicative Maybe 
Generic1 Maybe 
MonadBaseControl Maybe Maybe 
MonadBase Maybe Maybe 
Eq a => Eq (Maybe a) 
Ord a => Ord (Maybe a) 
Read a => Read (Maybe a) 
Show a => Show (Maybe a) 
Generic (Maybe a) 
Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there is no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Hashable a => Hashable (Maybe a) 
Arguable a => Argument (Maybe a) 
Typeable (* -> *) Maybe 
type Rep1 Maybe = D1 D1Maybe ((:+:) (C1 C1_0Maybe U1) (C1 C1_1Maybe (S1 NoSelector Par1))) 
data StM Maybe = St a 
type Rep (Maybe a) = D1 D1Maybe ((:+:) (C1 C1_0Maybe U1) (C1 C1_1Maybe (S1 NoSelector (Rec0 a)))) 
type (==) (Maybe k) a b = EqMaybe k a b 

data Ordering :: *

Constructors

LT 
EQ 
GT 

Instances

Bounded Ordering 
Enum Ordering 
Eq Ordering 
Ord Ordering 
Read Ordering 
Show Ordering 
Generic Ordering 
Monoid Ordering 
Hashable Ordering 
Typeable * Ordering 
type Rep Ordering = D1 D1Ordering ((:+:) (C1 C1_0Ordering U1) ((:+:) (C1 C1_1Ordering U1) (C1 C1_2Ordering U1))) 
type (==) Ordering a b = EqOrdering a b 

data Bool :: *

Constructors

False 
True 

Instances

Bounded Bool 
Enum Bool 
Eq Bool 
Ord Bool 
Read Bool 
Show Bool 
Generic Bool 
Storable Bool 
Hashable Bool 
Unbox Bool 
Typeable * Bool 
MVector MVector Bool 
Vector Vector Bool 
type Rep Bool = D1 D1Bool ((:+:) (C1 C1_0Bool U1) (C1 C1_1Bool U1)) 
data Vector Bool = V_Bool (Vector Word8) 
data MVector s Bool = MV_Bool (MVector s Word8) 
type (==) Bool a b = EqBool a b 

data Char :: *

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) characters (see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 characters), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char.

To convert a Char to or from the corresponding Int value defined by Unicode, use toEnum and fromEnum from the Enum class respectively (or equivalently ord and chr).

Instances

Bounded Char 
Enum Char 
Eq Char 
Ord Char 
Read Char 
Show Char 
Generic Char 
Storable Char 
ErrorList Char 
Hashable Char 
Unbox Char 
Argument String 
Arguable Char 
Arguable String 
Typeable * Char 
MVector MVector Char 
Vector Vector Char 
IsString [Char] 
type Rep Char = D1 D_Char (C1 C_Char (S1 NoSelector (Rec0 Char))) 
data Vector Char = V_Char (Vector Char) 
data MVector s Char = MV_Char (MVector s Char) 

data IO a :: * -> *

A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a.

There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main.

IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.

Instances

Monad IO 
Functor IO 
MonadPlus IO 
Applicative IO 
MonadIO IO 
PrimMonad IO 
MonadBaseControl IO IO 
MonadBase IO IO 
Typeable (* -> *) IO 
type PrimState IO = RealWorld 
data StM IO = StIO a 

data Either a b :: * -> * -> *

The Either type represents values with two possibilities: a value of type Either a b is either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an error; by convention, the Left constructor is used to hold an error value and the Right constructor is used to hold a correct value (mnemonic: "right" also means "correct").

Constructors

Left a 
Right b 

Instances

Error e => Alternative (Either e) 
Monad (Either e) 
Functor (Either a) 
Error e => MonadPlus (Either e) 
Applicative (Either e) 
Generic1 (Either a) 
MonadBaseControl (Either e) (Either e) 
MonadBase (Either e) (Either e) 
(Eq a, Eq b) => Eq (Either a b) 
(Ord a, Ord b) => Ord (Either a b) 
(Read a, Read b) => Read (Either a b) 
(Show a, Show b) => Show (Either a b) 
Generic (Either a b) 
(Hashable a, Hashable b) => Hashable (Either a b) 
Typeable (* -> * -> *) Either 
type Rep1 (Either a) = D1 D1Either ((:+:) (C1 C1_0Either (S1 NoSelector (Rec0 a))) (C1 C1_1Either (S1 NoSelector Par1))) 
data StM (Either e) = StE a 
type Rep (Either a b) = D1 D1Either ((:+:) (C1 C1_0Either (S1 NoSelector (Rec0 a))) (C1 C1_1Either (S1 NoSelector (Rec0 b)))) 
type (==) (Either k k1) a b = EqEither k k1 a b 

Re-exports

Packed reps

data ByteString :: *

A space-efficient representation of a Word8 vector, supporting many efficient operations.

A ByteString contains 8-bit bytes, or by using the operations from Data.ByteString.Char8 it can be interpreted as containing 8-bit characters.

type LText = Text Source

Containers

data Map k a :: * -> * -> *

A Map from keys k to values a.

Instances

Functor (Map k) 
Foldable (Map k) 
Traversable (Map k) 
(Eq k, Eq a) => Eq (Map k a) 
(Data k, Data a, Ord k) => Data (Map k a) 
(Ord k, Ord v) => Ord (Map k v) 
(Ord k, Read k, Read e) => Read (Map k e) 
(Show k, Show a) => Show (Map k a) 
Ord k => Monoid (Map k v) 
(NFData k, NFData a) => NFData (Map k a) 
Typeable (* -> * -> *) Map 

data HashMap k v :: * -> * -> *

Instances

Functor (HashMap k) 
Foldable (HashMap k) 
Traversable (HashMap k) 
(Eq k, Hashable k) => IsList (HashMap k v) 
(Eq k, Eq v) => Eq (HashMap k v) 
(Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) 
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) 
(Show k, Show v) => Show (HashMap k v) 
(Eq k, Hashable k) => Monoid (HashMap k v) 
(NFData k, NFData v) => NFData (HashMap k v) 
Typeable (* -> * -> *) HashMap 
type Item (HashMap k v) = (k, v) 

data IntMap a :: * -> *

A map of integers to values a.

Instances

Functor IntMap 
Foldable IntMap 
Traversable IntMap 
Eq a => Eq (IntMap a) 
Data a => Data (IntMap a) 
Ord a => Ord (IntMap a) 
Read e => Read (IntMap e) 
Show a => Show (IntMap a) 
Monoid (IntMap a) 
NFData a => NFData (IntMap a) 
Typeable (* -> *) IntMap 

data Set a :: * -> *

A set of values a.

Instances

Foldable Set 
Eq a => Eq (Set a) 
(Data a, Ord a) => Data (Set a) 
Ord a => Ord (Set a) 
(Read a, Ord a) => Read (Set a) 
Show a => Show (Set a) 
Ord a => Monoid (Set a) 
NFData a => NFData (Set a) 
Typeable (* -> *) Set 

data HashSet a :: * -> *

Instances

Foldable HashSet 
(Eq a, Hashable a) => IsList (HashSet a) 
(Hashable a, Eq a) => Eq (HashSet a) 
(Data a, Eq a, Hashable a) => Data (HashSet a) 
(Eq a, Hashable a, Read a) => Read (HashSet a) 
Show a => Show (HashSet a) 
(Hashable a, Eq a) => Monoid (HashSet a) 
NFData a => NFData (HashSet a) 
Typeable (* -> *) HashSet 
type Item (HashSet a) = a 

data IntSet :: *

A set of integers.

data Seq a :: * -> *

General-purpose finite sequences.

Instances

Alternative Seq 
Monad Seq 
Functor Seq 
MonadPlus Seq 
Applicative Seq 
Foldable Seq 
Traversable Seq 
Eq a => Eq (Seq a) 
Data a => Data (Seq a) 
Ord a => Ord (Seq a) 
Read a => Read (Seq a) 
Show a => Show (Seq a) 
Monoid (Seq a) 
NFData a => NFData (Seq a) 
Typeable (* -> *) Seq 

data Vector a :: * -> *

Instances

Alternative Vector 
Monad Vector 
Functor Vector 
MonadPlus Vector 
Applicative Vector 
Foldable Vector 
Traversable Vector 
Vector Vector a 
IsList (Vector a) 
Eq a => Eq (Vector a) 
Data a => Data (Vector a) 
Ord a => Ord (Vector a) 
Read a => Read (Vector a) 
Show a => Show (Vector a) 
Monoid (Vector a) 
NFData a => NFData (Vector a) 
Typeable (* -> *) Vector 
type Mutable Vector = MVector 
type Item (Vector a) = a 

type UVector = Vector Source

class (Vector Vector a, MVector MVector a) => Unbox a

Instances

Unbox Bool 
Unbox Char 
Unbox Double 
Unbox Float 
Unbox Int 
Unbox Int8 
Unbox Int16 
Unbox Int32 
Unbox Int64 
Unbox Word 
Unbox Word8 
Unbox Word16 
Unbox Word32 
Unbox Word64 
Unbox () 
(RealFloat a, Unbox a) => Unbox (Complex a) 
(Unbox a, Unbox b) => Unbox (a, b) 
(Unbox a, Unbox b, Unbox c) => Unbox (a, b, c) 
(Unbox a, Unbox b, Unbox c, Unbox d) => Unbox (a, b, c, d) 
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => Unbox (a, b, c, d, e) 
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => Unbox (a, b, c, d, e, f) 

type SVector = Vector Source

class Storable a

The member functions of this class facilitate writing values of primitive types to raw memory (which may have been allocated with the above mentioned routines) and reading values from blocks of raw memory. The class, furthermore, includes support for computing the storage requirements and alignment restrictions of storable types.

Memory addresses are represented as values of type Ptr a, for some a which is an instance of class Storable. The type argument to Ptr helps provide some valuable type safety in FFI code (you can't mix pointers of different types without an explicit cast), while helping the Haskell type system figure out which marshalling method is needed for a given pointer.

All marshalling between Haskell and a foreign language ultimately boils down to translating Haskell data structures into the binary representation of a corresponding data structure of the foreign language and vice versa. To code this marshalling in Haskell, it is necessary to manipulate primitive data types stored in unstructured memory blocks. The class Storable facilitates this manipulation on all types for which it is instantiated, which are the standard basic types of Haskell, the fixed size Int types (Int8, Int16, Int32, Int64), the fixed size Word types (Word8, Word16, Word32, Word64), StablePtr, all types from Foreign.C.Types, as well as Ptr.

Minimal complete definition: sizeOf, alignment, one of peek, peekElemOff and peekByteOff, and one of poke, pokeElemOff and pokeByteOff.

Minimal complete definition

sizeOf, alignment, (peek | peekElemOff | peekByteOff), (poke | pokeElemOff | pokeByteOff)

class Hashable a where

Minimal complete definition

Nothing

Methods

hashWithSalt :: Int -> a -> Int

hash :: a -> Int

Numbers

data Word :: *

A Word is an unsigned integral type, with the same size as Int.

Instances

Bounded Word 
Enum Word 
Eq Word 
Integral Word 
Num Word 
Ord Word 
Read Word 
Real Word 
Show Word 
Storable Word 
Hashable Word 
Unbox Word 
Typeable * Word 
MVector MVector Word 
Vector Vector Word 
data Vector Word = V_Word (Vector Word) 
data MVector s Word = MV_Word (MVector s Word) 

data Word8 :: *

8-bit unsigned integer type

Instances

Bounded Word8 
Enum Word8 
Eq Word8 
Integral Word8 
Num Word8 
Ord Word8 
Read Word8 
Real Word8 
Show Word8 
Ix Word8 
Storable Word8 
Bits Word8 
FiniteBits Word8 
Hashable Word8 
Unbox Word8 
Typeable * Word8 
MVector MVector Word8 
Vector Vector Word8 
data Vector Word8 = V_Word8 (Vector Word8) 
data MVector s Word8 = MV_Word8 (MVector s Word8) 

data Word32 :: *

32-bit unsigned integer type

data Word64 :: *

64-bit unsigned integer type

data Int :: *

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using minBound and maxBound from the Bounded class.

Instances

Bounded Int 
Enum Int 
Eq Int 
Integral Int 
Num Int 
Ord Int 
Read Int 
Real Int 
Show Int 
Generic Int 
Storable Int 
Hashable Int 
Unbox Int 
Typeable * Int 
MVector MVector Int 
Vector Vector Int 
type Rep Int = D1 D_Int (C1 C_Int (S1 NoSelector (Rec0 Int))) 
data Vector Int = V_Int (Vector Int) 
data MVector s Int = MV_Int (MVector s Int) 

data Int32 :: *

32-bit signed integer type

Instances

Bounded Int32 
Enum Int32 
Eq Int32 
Integral Int32 
Num Int32 
Ord Int32 
Read Int32 
Real Int32 
Show Int32 
Ix Int32 
Storable Int32 
Bits Int32 
FiniteBits Int32 
Hashable Int32 
Unbox Int32 
Typeable * Int32 
MVector MVector Int32 
Vector Vector Int32 
data Vector Int32 = V_Int32 (Vector Int32) 
data MVector s Int32 = MV_Int32 (MVector s Int32) 

data Int64 :: *

64-bit signed integer type

Instances

Bounded Int64 
Enum Int64 
Eq Int64 
Integral Int64 
Num Int64 
Ord Int64 
Read Int64 
Real Int64 
Show Int64 
Ix Int64 
Storable Int64 
Bits Int64 
FiniteBits Int64 
Hashable Int64 
Unbox Int64 
Typeable * Int64 
MVector MVector Int64 
Vector Vector Int64 
data Vector Int64 = V_Int64 (Vector Int64) 
data MVector s Int64 = MV_Int64 (MVector s Int64) 

type Rational = Ratio Integer

Arbitrary-precision rational numbers, represented as a ratio of two Integer values. A rational number may be constructed using the % operator.

data Float :: *

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Instances

Enum Float 
Eq Float 
Floating Float 
Fractional Float 
Num Float 
Ord Float 
Read Float 
Real Float 
RealFloat Float 
RealFrac Float 
Show Float 
Generic Float 
Storable Float 
Hashable Float 
Unbox Float 
Typeable * Float 
MVector MVector Float 
Vector Vector Float 
type Rep Float = D1 D_Float (C1 C_Float (S1 NoSelector (Rec0 Float))) 
data Vector Float = V_Float (Vector Float) 
data MVector s Float = MV_Float (MVector s Float) 

data Double :: *

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Instances

Numeric functions

(^) :: (Num a, Integral b) => a -> b -> a infixr 8

raise a number to a non-negative integral power

(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8

raise a number to an integral power

subtract :: Num a => a -> a -> a

the same as flip (-).

Because - is treated specially in the Haskell grammar, (- e) is not a section, but an application of prefix negation. However, (subtract exp) is equivalent to the disallowed section.

fromIntegral :: (Integral a, Num b) => a -> b

general coercion from integral types

realToFrac :: (Real a, Fractional b) => a -> b

general coercion to fractional types

Monoids

class Monoid a where

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

  • mappend mempty x = x
  • mappend x mempty = x
  • mappend x (mappend y z) = mappend (mappend x y) z
  • mconcat = foldr mappend mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Minimal complete definition: mempty and mappend.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

Minimal complete definition

mempty, mappend

Methods

mempty :: a

Identity of mappend

mappend :: a -> a -> a

An associative operation

mconcat :: [a] -> a

Fold a list using the monoid. For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

Instances

Monoid Ordering 
Monoid () 
Monoid All 
Monoid Any 
Monoid ByteString 
Monoid ByteString 
Monoid IntSet 
Monoid Text 
Monoid FilePath 
Monoid Text 
Monoid [a] 
Monoid a => Monoid (Dual a) 
Monoid (Endo a) 
Num a => Monoid (Sum a) 
Num a => Monoid (Product a) 
Monoid (First a) 
Monoid (Last a) 
Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there is no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Monoid (IntMap a) 
Ord a => Monoid (Set a) 
Monoid (Seq a) 
Unbox a => Monoid (Vector a) 
Monoid (Vector a) 
Storable a => Monoid (Vector a) 
(Hashable a, Eq a) => Monoid (HashSet a) 
Prim a => Monoid (Vector a) 
Monoid b => Monoid (a -> b) 
(Monoid a, Monoid b) => Monoid (a, b) 
Monoid a => Monoid (Const a b) 
Monoid (Proxy * s) 
Ord k => Monoid (Map k v) 
(Eq k, Hashable k) => Monoid (HashMap k v) 
Typeable (* -> Constraint) Monoid 
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) 
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) 
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) 

(<>) :: Monoid m => m -> m -> m infixr 6

An infix synonym for mappend.

Since: 4.5.0.0

Arrow

first :: Arrow a => forall b c d. a b c -> a (b, d) (c, d)

Send the first component of the input through the argument arrow, and copy the rest unchanged to the output.

second :: Arrow a => forall b c d. a b c -> a (d, b) (d, c)

A mirror image of first.

The default definition may be overridden with a more efficient version if desired.

(***) :: Arrow a => forall b c b' c'. a b c -> a b' c' -> a (b, b') (c, c')

Split the input between the two argument arrows and combine their output. Note that this is in general not a functor.

The default definition may be overridden with a more efficient version if desired.

(&&&) :: Arrow a => forall b c c'. a b c -> a b c' -> a b (c, c')

Fanout: send the input to both argument arrows and combine their output.

The default definition may be overridden with a more efficient version if desired.

Maybe

mapMaybe :: (a -> Maybe b) -> [a] -> [b]

The mapMaybe function is a version of map which can throw out elements. In particular, the functional argument returns something of type Maybe b. If this is Nothing, no element is added on to the result list. If it just Just b, then b is included in the result list.

catMaybes :: [Maybe a] -> [a]

The catMaybes function takes a list of Maybes and returns a list of all the Just values.

fromMaybe :: a -> Maybe a -> a

The fromMaybe function takes a default value and and Maybe value. If the Maybe is Nothing, it returns the default values; otherwise, it returns the value contained in the Maybe.

isJust :: Maybe a -> Bool

The isJust function returns True iff its argument is of the form Just _.

isNothing :: Maybe a -> Bool

The isNothing function returns True iff its argument is Nothing.

listToMaybe :: [a] -> Maybe a

The listToMaybe function returns Nothing on an empty list or Just a where a is the first element of the list.

maybeToList :: Maybe a -> [a]

The maybeToList function returns an empty list when given Nothing or a singleton list when not given Nothing.

Either

partitionEithers :: [Either a b] -> ([a], [b])

Partitions a list of Either into two lists All the Left elements are extracted, in order, to the first component of the output. Similarly the Right elements are extracted to the second component of the output.

lefts :: [Either a b] -> [a]

Extracts from a list of Either all the Left elements All the Left elements are extracted in order.

rights :: [Either a b] -> [b]

Extracts from a list of Either all the Right elements All the Right elements are extracted in order.

Ord

on :: (b -> b -> c) -> (a -> b) -> a -> a -> c infixl 0

(*) `on` f = \x y -> f x * f y.

Typical usage: sortBy (compare `on` fst).

Algebraic properties:

  • (*) `on` id = (*) (if (*) ∉ {⊥, const ⊥})
  • ((*) `on` f) `on` g = (*) `on` (f . g)
  • flip on f . flip on g = flip on (g . f)

comparing :: Ord a => (b -> a) -> b -> b -> Ordering

comparing p x y = compare (p x) (p y)

Useful combinator for use in conjunction with the xxxBy family of functions from Data.List, for example:

  ... sortBy (comparing fst) ...

equating :: Eq a => (b -> a) -> b -> b -> Bool Source

newtype Down a :: * -> *

The Down type allows you to reverse sort order conveniently. A value of type Down a contains a value of type a (represented as Down a). If a has an Ord instance associated with it then comparing two values thus wrapped will give you the opposite of their normal sort order. This is particularly useful when sorting in generalised list comprehensions, as in: then sortWith by Down x

Provides Show and Read instances (since: 4.7.0.0).

Since: 4.6.0.0

Constructors

Down a 

Instances

Eq a => Eq (Down a) 
Ord a => Ord (Down a) 
Read a => Read (Down a) 
Show a => Show (Down a) 

Applicative

class Functor f => Applicative f where

A functor with application, providing operations to

  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*>).

A minimal complete definition must include implementations of these functions satisfying the following laws:

identity
pure id <*> v = v
composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
homomorphism
pure f <*> pure x = pure (f x)
interchange
u <*> pure y = pure ($ y) <*> u

The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:

As a consequence of these laws, the Functor instance for f will satisfy

If f is also a Monad, it should satisfy

(which implies that pure and <*> satisfy the applicative functor laws).

Minimal complete definition

pure, (<*>)

Methods

pure :: a -> f a

Lift a value.

(<*>) :: f (a -> b) -> f a -> f b infixl 4

Sequential application.

(*>) :: f a -> f b -> f b infixl 4

Sequence actions, discarding the value of the first argument.

(<*) :: f a -> f b -> f a infixl 4

Sequence actions, discarding the value of the second argument.

(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4

An infix synonym for fmap.

(<|>) :: Alternative f => forall a. f a -> f a -> f a

An associative binary operation

Monad

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1

Left-to-right Kleisli composition of monads.

Transformers

lift :: MonadTrans t => forall m a. Monad m => m a -> t m a

Lift a computation from the argument monad to the constructed monad.

class Monad m => MonadIO m where

Monads in which IO computations may be embedded. Any monad built by applying a sequence of monad transformers to the IO monad will be an instance of this class.

Instances should satisfy the following laws, which state that liftIO is a transformer of monads:

Methods

liftIO :: IO a -> m a

Lift a computation from the IO monad.

Instances

MonadIO IO 
MonadIO m => MonadIO (MaybeT m) 
MonadIO m => MonadIO (ListT m) 
MonadIO m => MonadIO (IdentityT m) 
(Monoid w, MonadIO m) => MonadIO (WriterT w m) 
(Monoid w, MonadIO m) => MonadIO (WriterT w m) 
MonadIO m => MonadIO (StateT s m) 
MonadIO m => MonadIO (StateT s m) 
MonadIO m => MonadIO (ReaderT r m) 
(Error e, MonadIO m) => MonadIO (ErrorT e m) 
(Monoid w, MonadIO m) => MonadIO (RWST r w s m) 
(Monoid w, MonadIO m) => MonadIO (RWST r w s m) 

liftIO :: MonadIO m => forall a. IO a -> m a

Lift a computation from the IO monad.

Exceptions

class (Typeable * e, Show e) => Exception e where

Any type that you wish to throw or catch as an exception must be an instance of the Exception class. The simplest case is a new exception type directly below the root:

data MyException = ThisException | ThatException
    deriving (Show, Typeable)

instance Exception MyException

The default method definitions in the Exception class do what we need in this case. You can now throw and catch ThisException and ThatException as exceptions:

*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
Caught ThisException

In more complicated examples, you may wish to define a whole hierarchy of exceptions:

---------------------------------------------------------------------
-- Make the root exception type for all the exceptions in a compiler

data SomeCompilerException = forall e . Exception e => SomeCompilerException e
    deriving Typeable

instance Show SomeCompilerException where
    show (SomeCompilerException e) = show e

instance Exception SomeCompilerException

compilerExceptionToException :: Exception e => e -> SomeException
compilerExceptionToException = toException . SomeCompilerException

compilerExceptionFromException :: Exception e => SomeException -> Maybe e
compilerExceptionFromException x = do
    SomeCompilerException a <- fromException x
    cast a

---------------------------------------------------------------------
-- Make a subhierarchy for exceptions in the frontend of the compiler

data SomeFrontendException = forall e . Exception e => SomeFrontendException e
    deriving Typeable

instance Show SomeFrontendException where
    show (SomeFrontendException e) = show e

instance Exception SomeFrontendException where
    toException = compilerExceptionToException
    fromException = compilerExceptionFromException

frontendExceptionToException :: Exception e => e -> SomeException
frontendExceptionToException = toException . SomeFrontendException

frontendExceptionFromException :: Exception e => SomeException -> Maybe e
frontendExceptionFromException x = do
    SomeFrontendException a <- fromException x
    cast a

---------------------------------------------------------------------
-- Make an exception type for a particular frontend compiler exception

data MismatchedParentheses = MismatchedParentheses
    deriving (Typeable, Show)

instance Exception MismatchedParentheses where
    toException   = frontendExceptionToException
    fromException = frontendExceptionFromException

We can now catch a MismatchedParentheses exception as MismatchedParentheses, SomeFrontendException or SomeCompilerException, but not other types, e.g. IOException:

*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses catch e -> putStrLn ("Caught " ++ show (e :: IOException))
*** Exception: MismatchedParentheses

Minimal complete definition

Nothing

class Typeable a

The class Typeable allows a concrete representation of a type to be calculated.

Minimal complete definition

typeRep#

Instances

Typeable * Bool 
Typeable * Char 
Typeable * Double 
Typeable * Float 
Typeable * Int 
Typeable * Int8 
Typeable * Int16 
Typeable * Int32 
Typeable * Int64 
Typeable * Integer 
Typeable * Ordering 
Typeable * RealWorld 
Typeable * Word 
Typeable * Word8 
Typeable * Word16 
Typeable * Word32 
Typeable * Word64 
Typeable * () 
Typeable * SpecConstrAnnotation 
Typeable * ThreadId 
Typeable * BlockedIndefinitelyOnMVar 
Typeable * BlockedIndefinitelyOnSTM 
Typeable * Deadlock 
Typeable * AssertionFailed 
Typeable * SomeAsyncException 
Typeable * AsyncException 
Typeable * ArrayException 
Typeable * ExitCode 
Typeable * IOException 
Typeable * ErrorCall 
Typeable * ArithException 
Typeable * TypeRep 
Typeable * TyCon 
Typeable * SomeException 
Typeable * ByteString 
Typeable * ByteString 
Typeable * IntSet 
Typeable * Root 
Typeable * Text 
Typeable * FilePath 
Typeable * Text 
Typeable * UnicodeException 
(Typeable (k1 -> k) s, Typeable k1 a) => Typeable k (s a)

Kind-polymorphic Typeable instance for type application

Typeable ((* -> *) -> Constraint) Alternative 
Typeable ((* -> *) -> Constraint) Applicative 
Typeable (* -> * -> * -> * -> * -> * -> * -> *) (,,,,,,) 
Typeable (* -> * -> * -> * -> * -> * -> *) (,,,,,) 
Typeable (* -> * -> * -> * -> * -> *) (,,,,) 
Typeable (* -> * -> * -> * -> *) (,,,) 
Typeable (* -> * -> * -> *) (,,) 
Typeable (* -> * -> * -> *) STArray 
Typeable (* -> * -> *) (->) 
Typeable (* -> * -> *) Either 
Typeable (* -> * -> *) (,) 
Typeable (* -> * -> *) ST 
Typeable (* -> * -> *) Array 
Typeable (* -> * -> *) STRef 
Typeable (* -> * -> *) Map 
Typeable (* -> * -> *) MVector 
Typeable (* -> * -> *) MVector 
Typeable (* -> * -> *) MVector 
Typeable (* -> * -> *) HashMap 
Typeable (* -> * -> *) MVector 
Typeable (* -> *) [] 
Typeable (* -> *) Ratio 
Typeable (* -> *) IO 
Typeable (* -> *) Ptr 
Typeable (* -> *) FunPtr 
Typeable (* -> *) Complex 
Typeable (* -> *) STM 
Typeable (* -> *) TVar 
Typeable (* -> *) Maybe 
Typeable (* -> *) IntMap 
Typeable (* -> *) Set 
Typeable (* -> *) Seq 
Typeable (* -> *) ViewL 
Typeable (* -> *) ViewR 
Typeable (* -> *) Vector 
Typeable (* -> *) Vector 
Typeable (* -> *) Vector 
Typeable (* -> *) HashSet 
Typeable (* -> *) Vector 
Typeable (* -> Constraint) Monoid 
Typeable (k -> *) (Proxy k) 
Typeable (k -> k -> *) (Coercion k) 
Typeable (k -> k -> *) ((:~:) k) 

data SomeException :: *

The SomeException type is the root of the exception type hierarchy. When an exception of type e is thrown, behind the scenes it is encapsulated in a SomeException.

data IOException :: *

Exceptions that occur in the IO monad. An IOException records a more specific error type, a descriptive string and maybe the handle that was used when the error was flagged.

throwIO :: (MonadBase IO m, Exception e) => e -> m a

try :: (MonadBaseControl IO m, Exception e) => m a -> m (Either e a)

tryJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> m a -> m (Either b a)

catch :: (MonadBaseControl IO m, Exception e) => m a -> (e -> m a) -> m a

catchJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> m a -> (b -> m a) -> m a

handle :: (MonadBaseControl IO m, Exception e) => (e -> m a) -> m a -> m a

handleJust :: (MonadBaseControl IO m, Exception e) => (e -> Maybe b) -> (b -> m a) -> m a -> m a

bracket :: MonadBaseControl IO m => m a -> (a -> m b) -> (a -> m c) -> m c

bracket_ :: MonadBaseControl IO m => m a -> m b -> m c -> m c

bracketOnError :: MonadBaseControl IO m => m a -> (a -> m b) -> (a -> m c) -> m c

onException :: MonadBaseControl IO m => m a -> m b -> m a

finally :: MonadBaseControl IO m => m a -> m b -> m a

mask :: MonadBaseControl IO m => ((forall a. m a -> m a) -> m b) -> m b

mask_ :: MonadBaseControl IO m => m a -> m a

uninterruptibleMask :: MonadBaseControl IO m => ((forall a. m a -> m a) -> m b) -> m b

uninterruptibleMask_ :: MonadBaseControl IO m => m a -> m a

Files

Strings

type String = [Char]

A String is a list of characters. String constants in Haskell are values of type String.

Hashing

hash :: Hashable a => a -> Int

hashWithSalt :: Hashable a => Int -> a -> Int

Command line args

readArgs :: (MonadIO m, ArgumentTuple a) => m a Source