battleship-combinatorics-0.0.0.2: Compute number of possible arrangements in the battleship game
Combinatorics.Battleship.Size
data Zero Source #
Constructors
Defined in Combinatorics.Battleship.Size
Methods
switch :: f Zero -> (forall m. Nat m => f (Succ m)) -> f Zero Source #
data Succ n Source #
switch :: f Zero -> (forall m. Nat m => f (Succ m)) -> f (Succ n) Source #
type N0 = Zero Source #
type N1 = Succ N0 Source #
type P1 w = Succ w Source #
type N2 = Succ N1 Source #
type P2 w = Succ (P1 w) Source #
type N3 = Succ N2 Source #
type P3 w = Succ (P2 w) Source #
type N4 = Succ N3 Source #
type P4 w = Succ (P3 w) Source #
type N5 = Succ N4 Source #
type P5 w = Succ (P4 w) Source #
type N6 = Succ N5 Source #
type P6 w = Succ (P5 w) Source #
type N7 = Succ N6 Source #
type P7 w = Succ (P6 w) Source #
type N8 = Succ N7 Source #
type P8 w = Succ (P7 w) Source #
type N9 = Succ N8 Source #
type P9 w = Succ (P8 w) Source #
type N10 = Succ N9 Source #
type P10 w = Succ (P9 w) Source #
type N11 = Succ N10 Source #
type P11 w = Succ (P10 w) Source #
type N12 = Succ N11 Source #
type P12 w = Succ (P11 w) Source #
n0 :: Size N0 Source #
n1 :: Size N1 Source #
n2 :: Size N2 Source #
n3 :: Size N3 Source #
n4 :: Size N4 Source #
n5 :: Size N5 Source #
n6 :: Size N6 Source #
n7 :: Size N7 Source #
n8 :: Size N8 Source #
n9 :: Size N9 Source #
n10 :: Size N10 Source #
newtype Size n Source #
Fields
incSize :: Size n -> Size (Succ n) Source #
class Nat n where Source #
Minimal complete definition
switch
switch :: f Zero -> (forall m. Nat m => f (Succ m)) -> f n Source #
size :: Nat n => Size n Source #
reifyInt :: Int -> (forall n. Nat n => Size n -> a) -> a Source #