bifunctors-5.5.4: Bifunctors

Copyright(C) 2008-2016 Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityprovisional
Portabilityportable
Safe HaskellSafe
LanguageHaskell98

Data.Bifunctor.Biff

Description

 
Synopsis

Documentation

newtype Biff p f g a b Source #

Compose two Functors on the inside of a Bifunctor.

Constructors

Biff 

Fields

Instances
Functor (p (f a)) => Generic1 (Biff p f g a :: k1 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Associated Types

type Rep1 (Biff p f g a) :: k -> Type #

Methods

from1 :: Biff p f g a a0 -> Rep1 (Biff p f g a) a0 #

to1 :: Rep1 (Biff p f g a) a0 -> Biff p f g a a0 #

(Bitraversable p, Traversable f, Traversable g) => Bitraversable (Biff p f g) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> Biff p f g a b -> f0 (Biff p f g c d) #

(Bifoldable p, Foldable f, Foldable g) => Bifoldable (Biff p f g) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

bifold :: Monoid m => Biff p f g m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Biff p f g a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Biff p f g a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Biff p f g a b -> c #

(Bifunctor p, Functor f, Functor g) => Bifunctor (Biff p f g) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

bimap :: (a -> b) -> (c -> d) -> Biff p f g a c -> Biff p f g b d #

first :: (a -> b) -> Biff p f g a c -> Biff p f g b c #

second :: (b -> c) -> Biff p f g a b -> Biff p f g a c #

(Biapplicative p, Applicative f, Applicative g) => Biapplicative (Biff p f g) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

bipure :: a -> b -> Biff p f g a b Source #

(<<*>>) :: Biff p f g (a -> b) (c -> d) -> Biff p f g a c -> Biff p f g b d Source #

biliftA2 :: (a -> b -> c) -> (d -> e -> f0) -> Biff p f g a d -> Biff p f g b e -> Biff p f g c f0 Source #

(*>>) :: Biff p f g a b -> Biff p f g c d -> Biff p f g c d Source #

(<<*) :: Biff p f g a b -> Biff p f g c d -> Biff p f g a b Source #

(Bifunctor p, Functor g) => Functor (Biff p f g a) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

fmap :: (a0 -> b) -> Biff p f g a a0 -> Biff p f g a b #

(<$) :: a0 -> Biff p f g a b -> Biff p f g a a0 #

(Bifoldable p, Foldable g) => Foldable (Biff p f g a) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

fold :: Monoid m => Biff p f g a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Biff p f g a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Biff p f g a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Biff p f g a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Biff p f g a a0 -> a0 #

toList :: Biff p f g a a0 -> [a0] #

null :: Biff p f g a a0 -> Bool #

length :: Biff p f g a a0 -> Int #

elem :: Eq a0 => a0 -> Biff p f g a a0 -> Bool #

maximum :: Ord a0 => Biff p f g a a0 -> a0 #

minimum :: Ord a0 => Biff p f g a a0 -> a0 #

sum :: Num a0 => Biff p f g a a0 -> a0 #

product :: Num a0 => Biff p f g a a0 -> a0 #

(Bitraversable p, Traversable g) => Traversable (Biff p f g a) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Biff p f g a a0 -> f0 (Biff p f g a b) #

sequenceA :: Applicative f0 => Biff p f g a (f0 a0) -> f0 (Biff p f g a a0) #

mapM :: Monad m => (a0 -> m b) -> Biff p f g a a0 -> m (Biff p f g a b) #

sequence :: Monad m => Biff p f g a (m a0) -> m (Biff p f g a a0) #

Eq (p (f a) (g b)) => Eq (Biff p f g a b) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

(==) :: Biff p f g a b -> Biff p f g a b -> Bool #

(/=) :: Biff p f g a b -> Biff p f g a b -> Bool #

Ord (p (f a) (g b)) => Ord (Biff p f g a b) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

compare :: Biff p f g a b -> Biff p f g a b -> Ordering #

(<) :: Biff p f g a b -> Biff p f g a b -> Bool #

(<=) :: Biff p f g a b -> Biff p f g a b -> Bool #

(>) :: Biff p f g a b -> Biff p f g a b -> Bool #

(>=) :: Biff p f g a b -> Biff p f g a b -> Bool #

max :: Biff p f g a b -> Biff p f g a b -> Biff p f g a b #

min :: Biff p f g a b -> Biff p f g a b -> Biff p f g a b #

Read (p (f a) (g b)) => Read (Biff p f g a b) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

readsPrec :: Int -> ReadS (Biff p f g a b) #

readList :: ReadS [Biff p f g a b] #

readPrec :: ReadPrec (Biff p f g a b) #

readListPrec :: ReadPrec [Biff p f g a b] #

Show (p (f a) (g b)) => Show (Biff p f g a b) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Methods

showsPrec :: Int -> Biff p f g a b -> ShowS #

show :: Biff p f g a b -> String #

showList :: [Biff p f g a b] -> ShowS #

Generic (Biff p f g a b) Source # 
Instance details

Defined in Data.Bifunctor.Biff

Associated Types

type Rep (Biff p f g a b) :: Type -> Type #

Methods

from :: Biff p f g a b -> Rep (Biff p f g a b) x #

to :: Rep (Biff p f g a b) x -> Biff p f g a b #

type Rep1 (Biff p f g a :: k3 -> Type) Source # 
Instance details

Defined in Data.Bifunctor.Biff

type Rep1 (Biff p f g a :: k3 -> Type) = D1 (MetaData "Biff" "Data.Bifunctor.Biff" "bifunctors-5.5.4-IpOODCSBPgN59qmNYMMXNj" True) (C1 (MetaCons "Biff" PrefixI True) (S1 (MetaSel (Just "runBiff") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (p (f a) :.: Rec1 g)))
type Rep (Biff p f g a b) Source # 
Instance details

Defined in Data.Bifunctor.Biff

type Rep (Biff p f g a b) = D1 (MetaData "Biff" "Data.Bifunctor.Biff" "bifunctors-5.5.4-IpOODCSBPgN59qmNYMMXNj" True) (C1 (MetaCons "Biff" PrefixI True) (S1 (MetaSel (Just "runBiff") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (p (f a) (g b)))))