{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeApplications #-}
module Data.BitVector.Sized.Unsigned
( UnsignedBV(..)
, mkUnsignedBV
) where
import Data.BitVector.Sized.Internal (BV(..), mkBV)
import qualified Data.BitVector.Sized.Internal as BV
import Data.BitVector.Sized.Panic (panic)
import Data.Parameterized.NatRepr (NatRepr, knownNat, maxUnsigned, widthVal)
import Data.Bits (Bits(..), FiniteBits(..))
import Data.Ix (Ix(inRange, range, index))
import GHC.Generics (Generic)
import GHC.TypeLits (KnownNat)
import Numeric.Natural (Natural)
import System.Random
import System.Random.Stateful
newtype UnsignedBV w = UnsignedBV { UnsignedBV w -> BV w
asBV :: BV w }
deriving ((forall x. UnsignedBV w -> Rep (UnsignedBV w) x)
-> (forall x. Rep (UnsignedBV w) x -> UnsignedBV w)
-> Generic (UnsignedBV w)
forall x. Rep (UnsignedBV w) x -> UnsignedBV w
forall x. UnsignedBV w -> Rep (UnsignedBV w) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (w :: Nat) x. Rep (UnsignedBV w) x -> UnsignedBV w
forall (w :: Nat) x. UnsignedBV w -> Rep (UnsignedBV w) x
$cto :: forall (w :: Nat) x. Rep (UnsignedBV w) x -> UnsignedBV w
$cfrom :: forall (w :: Nat) x. UnsignedBV w -> Rep (UnsignedBV w) x
Generic, Int -> UnsignedBV w -> ShowS
[UnsignedBV w] -> ShowS
UnsignedBV w -> String
(Int -> UnsignedBV w -> ShowS)
-> (UnsignedBV w -> String)
-> ([UnsignedBV w] -> ShowS)
-> Show (UnsignedBV w)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall (w :: Nat). Int -> UnsignedBV w -> ShowS
forall (w :: Nat). [UnsignedBV w] -> ShowS
forall (w :: Nat). UnsignedBV w -> String
showList :: [UnsignedBV w] -> ShowS
$cshowList :: forall (w :: Nat). [UnsignedBV w] -> ShowS
show :: UnsignedBV w -> String
$cshow :: forall (w :: Nat). UnsignedBV w -> String
showsPrec :: Int -> UnsignedBV w -> ShowS
$cshowsPrec :: forall (w :: Nat). Int -> UnsignedBV w -> ShowS
Show, ReadPrec [UnsignedBV w]
ReadPrec (UnsignedBV w)
Int -> ReadS (UnsignedBV w)
ReadS [UnsignedBV w]
(Int -> ReadS (UnsignedBV w))
-> ReadS [UnsignedBV w]
-> ReadPrec (UnsignedBV w)
-> ReadPrec [UnsignedBV w]
-> Read (UnsignedBV w)
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
forall (w :: Nat). ReadPrec [UnsignedBV w]
forall (w :: Nat). ReadPrec (UnsignedBV w)
forall (w :: Nat). Int -> ReadS (UnsignedBV w)
forall (w :: Nat). ReadS [UnsignedBV w]
readListPrec :: ReadPrec [UnsignedBV w]
$creadListPrec :: forall (w :: Nat). ReadPrec [UnsignedBV w]
readPrec :: ReadPrec (UnsignedBV w)
$creadPrec :: forall (w :: Nat). ReadPrec (UnsignedBV w)
readList :: ReadS [UnsignedBV w]
$creadList :: forall (w :: Nat). ReadS [UnsignedBV w]
readsPrec :: Int -> ReadS (UnsignedBV w)
$creadsPrec :: forall (w :: Nat). Int -> ReadS (UnsignedBV w)
Read, UnsignedBV w -> UnsignedBV w -> Bool
(UnsignedBV w -> UnsignedBV w -> Bool)
-> (UnsignedBV w -> UnsignedBV w -> Bool) -> Eq (UnsignedBV w)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Bool
/= :: UnsignedBV w -> UnsignedBV w -> Bool
$c/= :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Bool
== :: UnsignedBV w -> UnsignedBV w -> Bool
$c== :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Bool
Eq, Eq (UnsignedBV w)
Eq (UnsignedBV w)
-> (UnsignedBV w -> UnsignedBV w -> Ordering)
-> (UnsignedBV w -> UnsignedBV w -> Bool)
-> (UnsignedBV w -> UnsignedBV w -> Bool)
-> (UnsignedBV w -> UnsignedBV w -> Bool)
-> (UnsignedBV w -> UnsignedBV w -> Bool)
-> (UnsignedBV w -> UnsignedBV w -> UnsignedBV w)
-> (UnsignedBV w -> UnsignedBV w -> UnsignedBV w)
-> Ord (UnsignedBV w)
UnsignedBV w -> UnsignedBV w -> Bool
UnsignedBV w -> UnsignedBV w -> Ordering
UnsignedBV w -> UnsignedBV w -> UnsignedBV w
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall (w :: Nat). Eq (UnsignedBV w)
forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Bool
forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Ordering
forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> UnsignedBV w
min :: UnsignedBV w -> UnsignedBV w -> UnsignedBV w
$cmin :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> UnsignedBV w
max :: UnsignedBV w -> UnsignedBV w -> UnsignedBV w
$cmax :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> UnsignedBV w
>= :: UnsignedBV w -> UnsignedBV w -> Bool
$c>= :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Bool
> :: UnsignedBV w -> UnsignedBV w -> Bool
$c> :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Bool
<= :: UnsignedBV w -> UnsignedBV w -> Bool
$c<= :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Bool
< :: UnsignedBV w -> UnsignedBV w -> Bool
$c< :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Bool
compare :: UnsignedBV w -> UnsignedBV w -> Ordering
$ccompare :: forall (w :: Nat). UnsignedBV w -> UnsignedBV w -> Ordering
$cp1Ord :: forall (w :: Nat). Eq (UnsignedBV w)
Ord)
mkUnsignedBV :: NatRepr w -> Integer -> UnsignedBV w
mkUnsignedBV :: NatRepr w -> Integer -> UnsignedBV w
mkUnsignedBV NatRepr w
w Integer
x = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (NatRepr w -> Integer -> BV w
forall (w :: Nat). NatRepr w -> Integer -> BV w
BV.mkBV NatRepr w
w Integer
x)
liftUnary :: (BV w -> BV w)
-> UnsignedBV w
-> UnsignedBV w
liftUnary :: (BV w -> BV w) -> UnsignedBV w -> UnsignedBV w
liftUnary BV w -> BV w
op (UnsignedBV BV w
bv) = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> BV w
op BV w
bv)
liftBinary :: (BV w -> BV w -> BV w)
-> UnsignedBV w
-> UnsignedBV w
-> UnsignedBV w
liftBinary :: (BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
liftBinary BV w -> BV w -> BV w
op (UnsignedBV BV w
bv1) (UnsignedBV BV w
bv2) = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> BV w -> BV w
op BV w
bv1 BV w
bv2)
liftBinaryInt :: (BV w -> Natural -> BV w)
-> UnsignedBV w
-> Int
-> UnsignedBV w
liftBinaryInt :: (BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
liftBinaryInt BV w -> Natural -> BV w
op (UnsignedBV BV w
bv) Int
i = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> Natural -> BV w
op BV w
bv (Int -> Natural
intToNatural Int
i))
intToNatural :: Int -> Natural
intToNatural :: Int -> Natural
intToNatural = Int -> Natural
forall a b. (Integral a, Num b) => a -> b
fromIntegral
instance KnownNat w => Bits (UnsignedBV w) where
.&. :: UnsignedBV w -> UnsignedBV w -> UnsignedBV w
(.&.) = (BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
forall (w :: Nat).
(BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
liftBinary BV w -> BV w -> BV w
forall (w :: Nat). BV w -> BV w -> BV w
BV.and
.|. :: UnsignedBV w -> UnsignedBV w -> UnsignedBV w
(.|.) = (BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
forall (w :: Nat).
(BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
liftBinary BV w -> BV w -> BV w
forall (w :: Nat). BV w -> BV w -> BV w
BV.or
xor :: UnsignedBV w -> UnsignedBV w -> UnsignedBV w
xor = (BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
forall (w :: Nat).
(BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
liftBinary BV w -> BV w -> BV w
forall (w :: Nat). BV w -> BV w -> BV w
BV.xor
complement :: UnsignedBV w -> UnsignedBV w
complement = (BV w -> BV w) -> UnsignedBV w -> UnsignedBV w
forall (w :: Nat). (BV w -> BV w) -> UnsignedBV w -> UnsignedBV w
liftUnary (NatRepr w -> BV w -> BV w
forall (w :: Nat). NatRepr w -> BV w -> BV w
BV.complement NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
shiftL :: UnsignedBV w -> Int -> UnsignedBV w
shiftL = (BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
forall (w :: Nat).
(BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
liftBinaryInt (NatRepr w -> BV w -> Natural -> BV w
forall (w :: Nat). NatRepr w -> BV w -> Natural -> BV w
BV.shl NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
shiftR :: UnsignedBV w -> Int -> UnsignedBV w
shiftR = (BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
forall (w :: Nat).
(BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
liftBinaryInt (NatRepr w -> BV w -> Natural -> BV w
forall (w :: Nat). NatRepr w -> BV w -> Natural -> BV w
BV.lshr NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
rotateL :: UnsignedBV w -> Int -> UnsignedBV w
rotateL = (BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
forall (w :: Nat).
(BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
liftBinaryInt (NatRepr w -> BV w -> Natural -> BV w
forall (w :: Nat). NatRepr w -> BV w -> Natural -> BV w
BV.rotateL NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
rotateR :: UnsignedBV w -> Int -> UnsignedBV w
rotateR = (BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
forall (w :: Nat).
(BV w -> Natural -> BV w) -> UnsignedBV w -> Int -> UnsignedBV w
liftBinaryInt (NatRepr w -> BV w -> Natural -> BV w
forall (w :: Nat). NatRepr w -> BV w -> Natural -> BV w
BV.rotateR NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
bitSize :: UnsignedBV w -> Int
bitSize UnsignedBV w
_ = NatRepr w -> Int
forall (n :: Nat). NatRepr n -> Int
widthVal (KnownNat w => NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat @w)
bitSizeMaybe :: UnsignedBV w -> Maybe Int
bitSizeMaybe UnsignedBV w
_ = Int -> Maybe Int
forall a. a -> Maybe a
Just (NatRepr w -> Int
forall (n :: Nat). NatRepr n -> Int
widthVal (KnownNat w => NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat @w))
isSigned :: UnsignedBV w -> Bool
isSigned = Bool -> UnsignedBV w -> Bool
forall a b. a -> b -> a
const Bool
False
testBit :: UnsignedBV w -> Int -> Bool
testBit (UnsignedBV BV w
bv) Int
ix = Natural -> BV w -> Bool
forall (w :: Nat). Natural -> BV w -> Bool
BV.testBit' (Int -> Natural
intToNatural Int
ix) BV w
bv
bit :: Int -> UnsignedBV w
bit = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> UnsignedBV w) -> (Int -> BV w) -> Int -> UnsignedBV w
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NatRepr w -> Natural -> BV w
forall (w :: Nat). NatRepr w -> Natural -> BV w
BV.bit' NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat (Natural -> BV w) -> (Int -> Natural) -> Int -> BV w
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Natural
intToNatural
popCount :: UnsignedBV w -> Int
popCount (UnsignedBV BV w
bv) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned (BV w -> BV w
forall (w :: Nat). BV w -> BV w
BV.popCount BV w
bv))
instance KnownNat w => FiniteBits (UnsignedBV w) where
finiteBitSize :: UnsignedBV w -> Int
finiteBitSize UnsignedBV w
_ = NatRepr w -> Int
forall (n :: Nat). NatRepr n -> Int
widthVal (KnownNat w => NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat @w)
countLeadingZeros :: UnsignedBV w -> Int
countLeadingZeros (UnsignedBV BV w
bv) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Integer -> Int) -> Integer -> Int
forall a b. (a -> b) -> a -> b
$ BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned (BV w -> Integer) -> BV w -> Integer
forall a b. (a -> b) -> a -> b
$ NatRepr w -> BV w -> BV w
forall (w :: Nat). NatRepr w -> BV w -> BV w
BV.clz NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat BV w
bv
countTrailingZeros :: UnsignedBV w -> Int
countTrailingZeros (UnsignedBV BV w
bv) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Integer -> Int) -> Integer -> Int
forall a b. (a -> b) -> a -> b
$ BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned (BV w -> Integer) -> BV w -> Integer
forall a b. (a -> b) -> a -> b
$ NatRepr w -> BV w -> BV w
forall (w :: Nat). NatRepr w -> BV w -> BV w
BV.ctz NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat BV w
bv
instance KnownNat w => Num (UnsignedBV w) where
+ :: UnsignedBV w -> UnsignedBV w -> UnsignedBV w
(+) = (BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
forall (w :: Nat).
(BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
liftBinary (NatRepr w -> BV w -> BV w -> BV w
forall (w :: Nat). NatRepr w -> BV w -> BV w -> BV w
BV.add NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
* :: UnsignedBV w -> UnsignedBV w -> UnsignedBV w
(*) = (BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
forall (w :: Nat).
(BV w -> BV w -> BV w)
-> UnsignedBV w -> UnsignedBV w -> UnsignedBV w
liftBinary (NatRepr w -> BV w -> BV w -> BV w
forall (w :: Nat). NatRepr w -> BV w -> BV w -> BV w
BV.mul NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
abs :: UnsignedBV w -> UnsignedBV w
abs = UnsignedBV w -> UnsignedBV w
forall a. a -> a
id
signum :: UnsignedBV w -> UnsignedBV w
signum (UnsignedBV BV w
bv) = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> UnsignedBV w) -> BV w -> UnsignedBV w
forall a b. (a -> b) -> a -> b
$ Integer -> BV w
forall (w :: Nat). Integer -> BV w
BV.BV (Integer -> BV w) -> Integer -> BV w
forall a b. (a -> b) -> a -> b
$ Integer -> Integer
forall a. Num a => a -> a
signum (Integer -> Integer) -> Integer -> Integer
forall a b. (a -> b) -> a -> b
$ BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
bv
fromInteger :: Integer -> UnsignedBV w
fromInteger = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> UnsignedBV w)
-> (Integer -> BV w) -> Integer -> UnsignedBV w
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NatRepr w -> Integer -> BV w
forall (w :: Nat). NatRepr w -> Integer -> BV w
mkBV NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat
negate :: UnsignedBV w -> UnsignedBV w
negate = (BV w -> BV w) -> UnsignedBV w -> UnsignedBV w
forall (w :: Nat). (BV w -> BV w) -> UnsignedBV w -> UnsignedBV w
liftUnary (NatRepr w -> BV w -> BV w
forall (w :: Nat). NatRepr w -> BV w -> BV w
BV.negate NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
instance KnownNat w => Enum (UnsignedBV w) where
toEnum :: Int -> UnsignedBV w
toEnum = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> UnsignedBV w) -> (Int -> BV w) -> Int -> UnsignedBV w
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NatRepr w -> Integer -> BV w
forall (w :: Nat). NatRepr w -> Integer -> BV w
mkBV NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat (Integer -> BV w) -> (Int -> Integer) -> Int -> BV w
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
checkInt
where checkInt :: Int -> Integer
checkInt Int
i | Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i Bool -> Bool -> Bool
&& Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= (NatRepr w -> Integer
forall (w :: Nat). NatRepr w -> Integer
maxUnsigned (KnownNat w => NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat @w)) = Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
i
| Bool
otherwise = String -> [String] -> Integer
forall a. String -> [String] -> a
panic String
"Data.BitVector.Sized.Unsigned"
[String
"toEnum: bad argument"]
fromEnum :: UnsignedBV w -> Int
fromEnum (UnsignedBV BV w
bv) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
bv)
instance KnownNat w => Ix (UnsignedBV w) where
range :: (UnsignedBV w, UnsignedBV w) -> [UnsignedBV w]
range (UnsignedBV BV w
loBV, UnsignedBV BV w
hiBV) =
(BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> UnsignedBV w)
-> (Integer -> BV w) -> Integer -> UnsignedBV w
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NatRepr w -> Integer -> BV w
forall (w :: Nat). NatRepr w -> Integer -> BV w
mkBV NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat) (Integer -> UnsignedBV w) -> [Integer] -> [UnsignedBV w]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
[BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
loBV .. BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
hiBV]
index :: (UnsignedBV w, UnsignedBV w) -> UnsignedBV w -> Int
index (UnsignedBV BV w
loBV, UnsignedBV BV w
hiBV) (UnsignedBV BV w
ixBV) =
(Integer, Integer) -> Integer -> Int
forall a. Ix a => (a, a) -> a -> Int
index ( BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
loBV,
BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
hiBV)
(BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
ixBV)
inRange :: (UnsignedBV w, UnsignedBV w) -> UnsignedBV w -> Bool
inRange (UnsignedBV BV w
loBV, UnsignedBV BV w
hiBV) (UnsignedBV BV w
ixBV) =
(Integer, Integer) -> Integer -> Bool
forall a. Ix a => (a, a) -> a -> Bool
inRange ( BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
loBV
, BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
hiBV)
(BV w -> Integer
forall (w :: Nat). BV w -> Integer
BV.asUnsigned BV w
ixBV)
instance KnownNat w => Bounded (UnsignedBV w) where
minBound :: UnsignedBV w
minBound = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (NatRepr w -> BV w
forall (w :: Nat). NatRepr w -> BV w
BV.minUnsigned NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
maxBound :: UnsignedBV w
maxBound = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (NatRepr w -> BV w
forall (w :: Nat). NatRepr w -> BV w
BV.maxUnsigned NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat)
instance KnownNat w => Uniform (UnsignedBV w) where
uniformM :: g -> m (UnsignedBV w)
uniformM g
g = BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> UnsignedBV w) -> m (BV w) -> m (UnsignedBV w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NatRepr w -> g -> m (BV w)
forall g (m :: * -> *) (w :: Nat).
StatefulGen g m =>
NatRepr w -> g -> m (BV w)
BV.uniformM NatRepr w
forall (n :: Nat). KnownNat n => NatRepr n
knownNat g
g
instance UniformRange (UnsignedBV w) where
uniformRM :: (UnsignedBV w, UnsignedBV w) -> g -> m (UnsignedBV w)
uniformRM (UnsignedBV BV w
lo, UnsignedBV BV w
hi) g
g =
BV w -> UnsignedBV w
forall (w :: Nat). BV w -> UnsignedBV w
UnsignedBV (BV w -> UnsignedBV w) -> m (BV w) -> m (UnsignedBV w)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (BV w, BV w) -> g -> m (BV w)
forall g (m :: * -> *) (w :: Nat).
StatefulGen g m =>
(BV w, BV w) -> g -> m (BV w)
BV.uUniformRM (BV w
lo, BV w
hi) g
g
instance KnownNat w => Random (UnsignedBV w)