canon-0.1.1.2: Arithmetic for Psychedelically Large Numbers

Copyright(c) 2018-2019 Frederick Schneider
LicenseMIT
MaintainerFrederick Schneider <fws.nyc@gmail.com>
StabilityProvisional
Safe HaskellNone
LanguageHaskell2010

Math.NumberTheory.Canon.SpecialFunctions

Description

This module defines numerous functions associated with massive numbers. This is an excellent resource: http://googology.wikia.com/wiki/Googology_Wiki

Synopsis

Documentation

moserFunc :: Canon -> Canon -> Canon -> Canon Source #

Generalized Moser function: https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Moser_notation to do: non-recursive definition?

moserTriangle :: Canon -> Canon Source #

Moser Triangle (see Wikipedia link)

moserSquare :: Canon -> Canon Source #

Moser Square (see Wikipedia link)

moserPentagon :: Canon Source #

Moser Pentagon (see Wikipedia link)

mega :: Canon Source #

Mega: "2 in a circle" (see Wikipedia link)

megiston :: Canon Source #

Megiston: "10 in a circle" (see Wikipedia link)

moser :: Canon Source #

Moser number; "2 in a mega-gon" (see Wikipedia link)

knuth :: Canon -> Canon -> Canon -> Canon Source #

Knuth's Up Arrow Notation, analagous to hyperoperations (https:/en.wikipedia.orgwiki/Knuth%27s_up-arrow_notation)

conwayChain :: [Canon] -> Canon Source #

Conway Chained-Arrow Notation (https:/en.wikipedia.orgwiki/Conway_chained_arrow_notation) This function will try to reduce generalized conway chain notation down to humble hyperoperations (or better)

conwayGuy :: Canon -> Canon Source #

Conway-Guy function is a conwayChain of n copies of n.

genGrahamFunc :: Canon -> Integer -> Canon Source #

Generalized Graham Function

grahamFunc :: Integer -> Canon Source #

Calls the generalized Graham function with value 3

grahamsNumber :: Canon Source #

Graham's Number (https:/en.wikipedia.orgwiki/Graham%27s_number)

ackermann :: Canon -> Canon -> Canon Source #

Ackermann function (https:/en.wikipedia.orgwiki/Ackermann_function)

ackermann3 :: Canon -> Canon -> Canon -> Canon Source #

The original 3 parameter Ackermann function