{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecursiveDo #-}
{-# LANGUAGE TemplateHaskell #-}
module Clash.Normalize.DEC
(collectGlobals
,isDisjoint
,mkDisjointGroup
)
where
import Control.Concurrent.Supply (splitSupply)
import qualified Control.Lens as Lens
import Data.Bits ((.&.),complement)
import Data.Coerce (coerce)
import qualified Data.Either as Either
import qualified Data.Foldable as Foldable
import qualified Data.IntMap.Strict as IM
import qualified Data.IntSet as IntSet
import qualified Data.List as List
import qualified Data.List.Extra as List
import qualified Data.Map.Strict as Map
import qualified Data.Maybe as Maybe
import Data.Monoid (All (..))
import Clash.Core.DataCon (DataCon, dcTag)
import Clash.Core.Evaluator (whnf')
import Clash.Core.FreeVars
(termFreeVars', typeFreeVars', localVarsDoNotOccurIn)
import Clash.Core.Literal (Literal (..))
import Clash.Core.Term
(LetBinding, Pat (..), PrimInfo (..), Term (..), TickInfo (..), collectArgs,
collectArgsTicks, mkApps, mkTicks, patIds)
import Clash.Core.TermInfo (termType)
import Clash.Core.TyCon (tyConDataCons)
import Clash.Core.Type (Type, isPolyFunTy, mkTyConApp, splitFunForallTy)
import Clash.Core.Var (isGlobalId)
import Clash.Core.VarEnv
(InScopeSet, elemInScopeSet, notElemInScopeSet)
import Clash.Normalize.Types (NormalizeState)
import Clash.Rewrite.Types
(RewriteMonad, bindings, evaluator, globalHeap, tcCache, tupleTcCache, uniqSupply)
import Clash.Rewrite.Util (mkInternalVar, mkSelectorCase,
isUntranslatableType, isConstant)
import Clash.Unique (lookupUniqMap)
import Clash.Util
data CaseTree a
= Leaf a
| LB [LetBinding] (CaseTree a)
| Branch Term [(Pat,CaseTree a)]
deriving (Eq,Show,Functor,Foldable)
isDisjoint :: CaseTree ([Either Term Type])
-> Bool
isDisjoint (Branch _ [_]) = False
isDisjoint ct = go ct
where
go (Leaf _) = False
go (LB _ ct') = go ct'
go (Branch _ []) = False
go (Branch _ [(_,x)]) = go x
go b@(Branch _ (_:_:_)) = allEqual (map Either.rights (Foldable.toList b))
removeEmpty :: Eq a => CaseTree [a] -> CaseTree [a]
removeEmpty l@(Leaf _) = l
removeEmpty (LB lb ct) =
case removeEmpty ct of
Leaf [] -> Leaf []
ct' -> LB lb ct'
removeEmpty (Branch s bs) =
case filter ((/= (Leaf [])) . snd) (map (second removeEmpty) bs) of
[] -> Leaf []
bs' -> Branch s bs'
allEqual :: Eq a => [a] -> Bool
allEqual [] = True
allEqual (x:xs) = all (== x) xs
collectGlobals'
:: InScopeSet
-> [(Term,Term)]
-> [Term]
-> Term
-> Bool
-> RewriteMonad
NormalizeState
(Term, [(Term, ([Term], CaseTree [Either Term Type]))])
collectGlobals' inScope substitution seen (Case scrut ty alts) _eIsConstant = do
rec (alts' ,collected) <- collectGlobalsAlts inScope substitution seen scrut'
alts
(scrut',collected') <- collectGlobals inScope substitution
(map fst collected ++ seen) scrut
return (Case scrut' ty alts',collected ++ collected')
collectGlobals' inScope substitution seen e@(collectArgsTicks -> (fun, args@(_:_), ticks)) eIsconstant
| not eIsconstant = do
tcm <- Lens.view tcCache
bndrs <- Lens.use bindings
(primEval, primUnwind) <- Lens.view evaluator
gh <- Lens.use globalHeap
ids <- Lens.use uniqSupply
let (ids1,ids2) = splitSupply ids
uniqSupply Lens..= ids2
let eval = (Lens.view Lens._3) . whnf' primEval primUnwind bndrs tcm gh ids1 inScope False
eTy = termType tcm e
untran <- isUntranslatableType False eTy
case untran of
False -> do
isInteresting <- interestingToLift inScope eval fun args ticks
case isInteresting of
Just fun' | fun' `notElem` seen -> do
(args',collected) <- collectGlobalsArgs inScope substitution
(fun':seen) args
let e' = Maybe.fromMaybe (mkApps fun' args') (List.lookup fun' substitution)
return (e',(fun',(seen,Leaf args')):collected)
_ -> do (args',collected) <- collectGlobalsArgs inScope substitution
seen args
return (mkApps (mkTicks fun ticks) args',collected)
_ -> return (e,[])
collectGlobals' inScope substitution seen (Letrec lbs body) _eIsConstant = do
(body',collected) <- collectGlobals inScope substitution seen body
(lbs',collected') <- collectGlobalsLbs inScope substitution
(map fst collected ++ seen)
lbs
return (Letrec lbs' body'
,map (second (second (LB lbs'))) (collected ++ collected')
)
collectGlobals' inScope substitution seen (Tick t e) eIsConstant = do
(e',collected) <- collectGlobals' inScope substitution seen e eIsConstant
return (Tick t e',collected)
collectGlobals' _ _ _ e _ = return (e,[])
collectGlobals
:: InScopeSet
-> [(Term,Term)]
-> [Term]
-> Term
-> RewriteMonad
NormalizeState
(Term, [(Term, ([Term], CaseTree [Either Term Type]))])
collectGlobals inScope substitution seen e =
collectGlobals' inScope substitution seen e (isConstant e)
collectGlobalsArgs ::
InScopeSet
-> [(Term,Term)]
-> [Term]
-> [Either Term Type]
-> RewriteMonad NormalizeState
([Either Term Type]
,[(Term,([Term],CaseTree [(Either Term Type)]))]
)
collectGlobalsArgs inScope substitution seen args = do
(_,(args',collected)) <- second unzip <$> List.mapAccumLM go seen args
return (args',concat collected)
where
go s (Left tm) = do
(tm',collected) <- collectGlobals inScope substitution s tm
return (map fst collected ++ s,(Left tm',collected))
go s (Right ty) = return (s,(Right ty,[]))
collectGlobalsAlts ::
InScopeSet
-> [(Term,Term)]
-> [Term]
-> Term
-> [(Pat,Term)]
-> RewriteMonad NormalizeState
([(Pat,Term)]
,[(Term,([Term],CaseTree [(Either Term Type)]))]
)
collectGlobalsAlts inScope substitution seen scrut alts = do
(alts',collected) <- unzip <$> mapM go alts
let collectedM = map (Map.fromList . map (second (second (:[])))) collected
collectedUN = Map.unionsWith (\(l1,r1) (l2,r2) -> (List.nub (l1 ++ l2),r1 ++ r2)) collectedM
collected' = map (second (second (Branch scrut))) (Map.toList collectedUN)
return (alts',collected')
where
go (p,e) = do
(e',collected) <- collectGlobals inScope substitution seen e
return ((p,e'),map (second (second (p,))) collected)
collectGlobalsLbs ::
InScopeSet
-> [(Term,Term)]
-> [Term]
-> [LetBinding]
-> RewriteMonad NormalizeState
([LetBinding]
,[(Term,([Term],CaseTree [(Either Term Type)]))]
)
collectGlobalsLbs inScope substitution seen lbs = do
(_,(lbs',collected)) <- second unzip <$> List.mapAccumLM go seen lbs
return (lbs',concat collected)
where
go :: [Term] -> LetBinding
-> RewriteMonad NormalizeState
([Term]
,(LetBinding
,[(Term,([Term],CaseTree [(Either Term Type)]))]
)
)
go s (id_, e) = do
(e',collected) <- collectGlobals inScope substitution s e
return (map fst collected ++ s,((id_,e'),collected))
mkDisjointGroup
:: InScopeSet
-> (Term,([Term],CaseTree [(Either Term Type)]))
-> RewriteMonad NormalizeState (Term,[Term])
mkDisjointGroup inScope (fun,(seen,cs)) = do
let argss = Foldable.toList cs
argssT = zip [0..] (List.transpose argss)
(sharedT,distinctT) = List.partition (areShared inScope . snd) argssT
shared = map (second head) sharedT
distinct = map (Either.lefts) (List.transpose (map snd distinctT))
cs' = fmap (zip [0..]) cs
cs'' = removeEmpty
$ fmap (Either.lefts . map snd)
(if null shared
then cs'
else fmap (filter (`notElem` shared)) cs')
tcm <- Lens.view tcCache
(distinctCaseM,distinctProjections) <- case distinct of
[] -> return (Nothing,[])
(uc:_) -> do
let argTys = map (termType tcm) uc
disJointSelProj inScope argTys cs''
let newArgs = mkDJArgs 0 shared distinctProjections
case distinctCaseM of
Just lb -> return (Letrec [lb] (mkApps fun newArgs), seen)
Nothing -> return (mkApps fun newArgs, seen)
disJointSelProj
:: InScopeSet
-> [Type]
-> CaseTree [Term]
-> RewriteMonad NormalizeState (Maybe LetBinding,[Term])
disJointSelProj _ _ (Leaf []) = return (Nothing,[])
disJointSelProj inScope argTys cs = do
let maxIndex = length argTys - 1
css = map (\i -> fmap ((:[]) . (!!i)) cs) [0..maxIndex]
(untran,tran) <- List.partitionM (isUntranslatableType False . snd) (zip [0..] argTys)
let untranCs = map (css!!) (map fst untran)
untranSels = zipWith (\(_,ty) cs' -> genCase ty Nothing [] cs')
untran untranCs
(lbM,projs) <- case tran of
[] -> return (Nothing,[])
[(i,ty)] -> return (Nothing,[genCase ty Nothing [] (css!!i)])
tys -> do
tcm <- Lens.view tcCache
tupTcm <- Lens.view tupleTcCache
let m = length tys
Just tupTcNm = IM.lookup m tupTcm
Just tupTc = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
(tyIxs,tys') = unzip tys
tupTy = mkTyConApp tupTcNm tys'
cs' = fmap (\es -> map (es !!) tyIxs) cs
djCase = genCase tupTy (Just tupDc) tys' cs'
scrutId <- mkInternalVar inScope "tupIn" tupTy
projections <- mapM (mkSelectorCase ($(curLoc) ++ "disJointSelProj")
inScope tcm (Var scrutId) (dcTag tupDc)) [0..m-1]
return (Just (scrutId,djCase),projections)
let selProjs = tranOrUnTran 0 (zip (map fst untran) untranSels) projs
return (lbM,selProjs)
where
tranOrUnTran _ [] projs = projs
tranOrUnTran _ sels [] = map snd sels
tranOrUnTran n ((ut,s):uts) (p:projs)
| n == ut = s : tranOrUnTran (n+1) uts (p:projs)
| otherwise = p : tranOrUnTran (n+1) ((ut,s):uts) projs
areShared :: InScopeSet -> [Either Term Type] -> Bool
areShared _ [] = True
areShared inScope xs@(x:_) = noFV1 && allEqual xs
where
noFV1 = case x of
Right ty -> getAll (Lens.foldMapOf (typeFreeVars' isLocallyBound IntSet.empty)
(const (All False)) ty)
Left tm -> getAll (Lens.foldMapOf (termFreeVars' isLocallyBound)
(const (All False)) tm)
isLocallyBound v = v `notElemInScopeSet` inScope
mkDJArgs :: Int
-> [(Int,Either Term Type)]
-> [Term]
-> [Either Term Type]
mkDJArgs _ cms [] = map snd cms
mkDJArgs _ [] uncms = map Left uncms
mkDJArgs n ((m,x):cms) (y:uncms)
| n == m = x : mkDJArgs (n+1) cms (y:uncms)
| otherwise = Left y : mkDJArgs (n+1) ((m,x):cms) uncms
genCase :: Type
-> Maybe DataCon
-> [Type]
-> CaseTree [Term]
-> Term
genCase ty dcM argTys = go
where
go (Leaf tms) =
case dcM of
Just dc -> mkApps (Data dc) (map Right argTys ++ map Left tms)
_ -> head tms
go (LB lb ct) =
Letrec lb (go ct)
go (Branch scrut [(p,ct)]) =
let ct' = go ct
(ptvs,pids) = patIds p
in if (coerce ptvs ++ coerce pids) `localVarsDoNotOccurIn` ct'
then ct'
else Case scrut ty [(p,ct')]
go (Branch scrut pats) =
Case scrut ty (map (second go) pats)
interestingToLift
:: InScopeSet
-> (Term -> Term)
-> Term
-> [Either Term Type]
-> [TickInfo]
-> RewriteMonad extra (Maybe Term)
interestingToLift inScope _ e@(Var v) _ ticks =
if NoDeDup `notElem` ticks && (isGlobalId v || v `elemInScopeSet` inScope)
then pure (Just e)
else pure Nothing
interestingToLift inScope eval e@(Prim pInfo) args ticks
| NoDeDup `notElem` ticks = do
let anyArgNotConstant = any (not . isConstant) lArgs
case List.lookup (primName pInfo) interestingPrims of
Just t | t || anyArgNotConstant -> pure (Just e)
_ | DeDup `elem` ticks -> pure (Just e)
_ -> do
let isInteresting = (\(x, y, z) -> interestingToLift inScope eval x y z) . collectArgsTicks
if isHOTy (primType pInfo) then do
anyInteresting <- List.anyM (fmap Maybe.isJust . isInteresting) lArgs
if anyInteresting then pure (Just e) else pure Nothing
else
pure Nothing
where
interestingPrims =
[("Clash.Sized.Internal.BitVector.*#",tailNonPow2)
,("Clash.Sized.Internal.BitVector.times#",tailNonPow2)
,("Clash.Sized.Internal.BitVector.quot#",lastNotPow2)
,("Clash.Sized.Internal.BitVector.rem#",lastNotPow2)
,("Clash.Sized.Internal.Index.*#",tailNonPow2)
,("Clash.Sized.Internal.Index.quot#",lastNotPow2)
,("Clash.Sized.Internal.Index.rem#",lastNotPow2)
,("Clash.Sized.Internal.Signed.*#",tailNonPow2)
,("Clash.Sized.Internal.Signed.times#",tailNonPow2)
,("Clash.Sized.Internal.Signed.rem#",lastNotPow2)
,("Clash.Sized.Internal.Signed.quot#",lastNotPow2)
,("Clash.Sized.Internal.Signed.div#",lastNotPow2)
,("Clash.Sized.Internal.Signed.mod#",lastNotPow2)
,("Clash.Sized.Internal.Unsigned.*#",tailNonPow2)
,("Clash.Sized.Internal.Unsigned.times#",tailNonPow2)
,("Clash.Sized.Internal.Unsigned.quot#",lastNotPow2)
,("Clash.Sized.Internal.Unsigned.rem#",lastNotPow2)
,("GHC.Base.quotInt",lastNotPow2)
,("GHC.Base.remInt",lastNotPow2)
,("GHC.Base.divInt",lastNotPow2)
,("GHC.Base.modInt",lastNotPow2)
,("GHC.Classes.divInt#",lastNotPow2)
,("GHC.Classes.modInt#",lastNotPow2)
,("GHC.Integer.Type.timesInteger",allNonPow2)
,("GHC.Integer.Type.divInteger",lastNotPow2)
,("GHC.Integer.Type.modInteger",lastNotPow2)
,("GHC.Integer.Type.quotInteger",lastNotPow2)
,("GHC.Integer.Type.remInteger",lastNotPow2)
,("GHC.Prim.*#",allNonPow2)
,("GHC.Prim.quotInt#",lastNotPow2)
,("GHC.Prim.remInt#",lastNotPow2)
]
lArgs = Either.lefts args
allNonPow2 = all (not . termIsPow2) lArgs
tailNonPow2 = case lArgs of
[] -> True
_ -> all (not . termIsPow2) (tail lArgs)
lastNotPow2 = case lArgs of
[] -> True
_ -> not (termIsPow2 (last lArgs))
termIsPow2 e' = case eval e' of
Literal (IntegerLiteral n) -> isPow2 n
a -> case collectArgs a of
(Prim p,[Right _,Left _,Left (Literal (IntegerLiteral n))])
| isFromInteger (primName p) -> isPow2 n
(Prim p,[Right _,Left _,Left _,Left (Literal (IntegerLiteral n))])
| primName p == "Clash.Sized.Internal.BitVector.fromInteger#" -> isPow2 n
(Prim p,[Right _, Left _,Left (Literal (IntegerLiteral n))])
| primName p == "Clash.Sized.Internal.BitVector.fromInteger##" -> isPow2 n
_ -> False
isPow2 x = x /= 0 && (x .&. (complement x + 1)) == x
isFromInteger x = x `elem` ["Clash.Sized.Internal.BitVector.fromInteger#"
,"Clash.Sized.Integer.Index.fromInteger"
,"Clash.Sized.Internal.Signed.fromInteger#"
,"Clash.Sized.Internal.Unsigned.fromInteger#"
]
isHOTy t = case splitFunForallTy t of
(args',_) -> any isPolyFunTy (Either.rights args')
interestingToLift _ _ _ _ _ = pure Nothing