{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE NondecreasingIndentation #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TemplateHaskell #-}
module Clash.Rewrite.Util
( module Clash.Rewrite.Util
, module Clash.Rewrite.WorkFree
) where
import Control.Concurrent.Supply (splitSupply)
import Control.DeepSeq
import Control.Exception (throw)
import Control.Lens
(Lens', (%=), (+=), (^.), _Left)
import qualified Control.Lens as Lens
import qualified Control.Monad as Monad
#if !MIN_VERSION_base(4,13,0)
import Control.Monad.Fail (MonadFail)
#endif
import qualified Control.Monad.State.Strict as State
import qualified Control.Monad.Writer as Writer
import Data.Bool (bool)
import Data.Bifunctor (bimap)
import Data.Coerce (coerce)
import Data.Functor.Const (Const (..))
import Data.List (group, partition, sort)
import qualified Data.List as List
import qualified Data.List.Extra as List
import Data.List.Extra (partitionM)
import qualified Data.Map as Map
import Data.Maybe
import qualified Data.Monoid as Monoid
import qualified Data.Set as Set
import qualified Data.Set.Lens as Lens
import qualified Data.Set.Ordered as OSet
import qualified Data.Set.Ordered.Extra as OSet
import Data.Text (Text)
import qualified Data.Text as Text
import System.IO.Unsafe (unsafePerformIO)
import Data.Binary (encode)
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BL
#if MIN_VERSION_ghc(9,0,0)
import GHC.Types.Basic (InlineSpec (..))
#else
import BasicTypes (InlineSpec (..))
#endif
import Clash.Core.DataCon (dcExtTyVars)
#if EXPERIMENTAL_EVALUATOR
import Clash.Core.PartialEval
import Clash.Core.PartialEval.NormalForm
#else
import Clash.Core.Evaluator.Types (PureHeap, whnf')
#endif
import Clash.Core.FreeVars
(freeLocalVars, localIdDoesNotOccurIn, localIdOccursIn,
typeFreeVars, termFreeVars', freeLocalIds)
import Clash.Core.Name
import Clash.Core.Pretty (showPpr)
import Clash.Core.Subst
(substTmEnv, aeqTerm, aeqType, extendIdSubst, mkSubst, substTm)
import Clash.Core.Term
import Clash.Core.TermInfo
import Clash.Core.TyCon
(TyConMap, tyConDataCons)
import Clash.Core.Type (KindOrType, Type (..),
TypeView (..), coreView1,
normalizeType,
typeKind, tyView)
import Clash.Core.Util
(dataConInstArgTysE)
import Clash.Core.Var
(Id, IdScope (..), TyVar, Var (..), mkGlobalId, mkLocalId, mkTyVar)
import Clash.Core.VarEnv
(InScopeSet, VarEnv, elemVarSet, extendInScopeSetList, mkInScopeSet,
uniqAway, uniqAway', mapVarEnv, eltsVarEnv, unitVarSet, emptyVarEnv,
mkVarEnv, eltsVarSet, elemVarEnv, lookupVarEnv, extendVarEnv)
import Clash.Debug
import Clash.Driver.Types
(DebugLevel (..), BindingMap, Binding(..), IsPrim(..))
import Clash.Netlist.Util (representableType)
import Clash.Pretty (clashPretty, showDoc)
import Clash.Rewrite.Types
import Clash.Rewrite.WorkFree
import Clash.Unique
import Clash.Util
import qualified Clash.Util.Interpolate as I
zoomExtra :: State.State extra a
-> RewriteMonad extra a
State extra a
m = (RewriteEnv
-> RewriteState extra -> Any -> (a, RewriteState extra, Any))
-> RewriteMonad extra a
forall extra a.
(RewriteEnv
-> RewriteState extra -> Any -> (a, RewriteState extra, Any))
-> RewriteMonad extra a
R (\RewriteEnv
_ RewriteState extra
s Any
w -> case State extra a -> extra -> (a, extra)
forall s a. State s a -> s -> (a, s)
State.runState State extra a
m (RewriteState extra
s RewriteState extra
-> Getting extra (RewriteState extra) extra -> extra
forall s a. s -> Getting a s a -> a
^. Getting extra (RewriteState extra) extra
forall extra1 extra2.
Lens (RewriteState extra1) (RewriteState extra2) extra1 extra2
extra) of
(a
a,extra
s') -> (a
a,RewriteState extra
s {_extra :: extra
_extra = extra
s'},Any
w))
findAccidentialShadows :: Term -> [[Id]]
findAccidentialShadows :: Term -> [[Id]]
findAccidentialShadows =
\case
Var {} -> []
Data {} -> []
Literal {} -> []
Prim {} -> []
Lam Id
_ Term
t -> Term -> [[Id]]
findAccidentialShadows Term
t
TyLam TyVar
_ Term
t -> Term -> [[Id]]
findAccidentialShadows Term
t
App Term
t1 Term
t2 -> (Term -> [[Id]]) -> [Term] -> [[Id]]
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> [b]) -> t a -> [b]
concatMap Term -> [[Id]]
findAccidentialShadows [Term
t1, Term
t2]
TyApp Term
t Type
_ -> Term -> [[Id]]
findAccidentialShadows Term
t
Cast Term
t Type
_ Type
_ -> Term -> [[Id]]
findAccidentialShadows Term
t
Tick TickInfo
_ Term
t -> Term -> [[Id]]
findAccidentialShadows Term
t
Case Term
t Type
_ [Alt]
as ->
(Alt -> [[Id]]) -> [Alt] -> [[Id]]
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> [b]) -> t a -> [b]
concatMap (Pat -> [[Id]]
findInPat (Pat -> [[Id]]) -> (Alt -> Pat) -> Alt -> [[Id]]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Pat
forall a b. (a, b) -> a
fst) [Alt]
as [[Id]] -> [[Id]] -> [[Id]]
forall a. [a] -> [a] -> [a]
++
(Term -> [[Id]]) -> [Term] -> [[Id]]
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> [b]) -> t a -> [b]
concatMap Term -> [[Id]]
findAccidentialShadows (Term
t Term -> [Term] -> [Term]
forall a. a -> [a] -> [a]
: (Alt -> Term) -> [Alt] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Alt -> Term
forall a b. (a, b) -> b
snd [Alt]
as)
Letrec [LetBinding]
bs Term
t ->
[Id] -> [[Id]]
findDups ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
bs) [[Id]] -> [[Id]] -> [[Id]]
forall a. [a] -> [a] -> [a]
++ Term -> [[Id]]
findAccidentialShadows Term
t
where
findInPat :: Pat -> [[Id]]
findInPat :: Pat -> [[Id]]
findInPat (LitPat Literal
_) = []
findInPat (Pat
DefaultPat) = []
findInPat (DataPat DataCon
_ [TyVar]
_ [Id]
ids) = [Id] -> [[Id]]
findDups [Id]
ids
findDups :: [Id] -> [[Id]]
findDups :: [Id] -> [[Id]]
findDups [Id]
ids = ([Id] -> Bool) -> [[Id]] -> [[Id]]
forall a. (a -> Bool) -> [a] -> [a]
filter ((Int
1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<) (Int -> Bool) -> ([Id] -> Int) -> [Id] -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Id] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length) ([Id] -> [[Id]]
forall a. Eq a => [a] -> [[a]]
group ([Id] -> [Id]
forall a. Ord a => [a] -> [a]
sort [Id]
ids))
apply
:: String
-> Rewrite extra
-> Rewrite extra
apply :: String -> Rewrite extra -> Rewrite extra
apply = \String
s Rewrite extra
rewrite TransformContext
ctx Term
expr0 -> do
DebugLevel
lvl <- Getting DebugLevel RewriteEnv DebugLevel
-> RewriteMonad extra DebugLevel
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting DebugLevel RewriteEnv DebugLevel
Lens' RewriteEnv DebugLevel
dbgLevel
Set String
dbgTranss <- Getting (Set String) RewriteEnv (Set String)
-> RewriteMonad extra (Set String)
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting (Set String) RewriteEnv (Set String)
Lens' RewriteEnv (Set String)
dbgTransformations
let isTryLvl :: Bool
isTryLvl = DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Eq a => a -> a -> Bool
== DebugLevel
DebugTry Bool -> Bool -> Bool
|| DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugAll
isRelevantTrans :: Bool
isRelevantTrans = String
s String -> Set String -> Bool
forall a. Ord a => a -> Set a -> Bool
`Set.member` Set String
dbgTranss Bool -> Bool -> Bool
|| Set String -> Bool
forall a. Set a -> Bool
Set.null Set String
dbgTranss
Bool -> String -> RewriteMonad extra () -> RewriteMonad extra ()
forall a. Bool -> String -> a -> a
traceIf (Bool
isTryLvl Bool -> Bool -> Bool
&& Bool
isRelevantTrans) (String
"Trying: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
s) (() -> RewriteMonad extra ()
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ())
(Term
expr1,Any
anyChanged) <- RewriteMonad extra Term -> RewriteMonad extra (Term, Any)
forall w (m :: Type -> Type) a. MonadWriter w m => m a -> m (a, w)
Writer.listen (Rewrite extra
rewrite TransformContext
ctx Term
expr0)
let hasChanged :: Bool
hasChanged = Any -> Bool
Monoid.getAny Any
anyChanged
!expr2 :: Term
expr2 = if Bool
hasChanged then Term
expr1 else Term
expr0
Bool -> RewriteMonad extra () -> RewriteMonad extra ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
Monad.when Bool
hasChanged ((Int -> Identity Int)
-> RewriteState extra -> Identity (RewriteState extra)
forall extra1. Lens' (RewriteState extra1) Int
transformCounter ((Int -> Identity Int)
-> RewriteState extra -> Identity (RewriteState extra))
-> Int -> RewriteMonad extra ()
forall s (m :: Type -> Type) a.
(MonadState s m, Num a) =>
ASetter' s a -> a -> m ()
+= Int
1)
Maybe String
rewriteHistFile <- Getting (Maybe String) RewriteEnv (Maybe String)
-> RewriteMonad extra (Maybe String)
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting (Maybe String) RewriteEnv (Maybe String)
Lens' RewriteEnv (Maybe String)
dbgRewriteHistoryFile
Bool -> RewriteMonad extra () -> RewriteMonad extra ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
Monad.when (Maybe String -> Bool
forall a. Maybe a -> Bool
isJust Maybe String
rewriteHistFile Bool -> Bool -> Bool
&& Bool
hasChanged) (RewriteMonad extra () -> RewriteMonad extra ())
-> RewriteMonad extra () -> RewriteMonad extra ()
forall a b. (a -> b) -> a -> b
$ do
(Id
curBndr, SrcSpan
_) <- Getting (Id, SrcSpan) (RewriteState extra) (Id, SrcSpan)
-> RewriteMonad extra (Id, SrcSpan)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState extra) (Id, SrcSpan)
forall extra1. Lens' (RewriteState extra1) (Id, SrcSpan)
curFun
let !()
_ = IO () -> ()
forall a. IO a -> a
unsafePerformIO
(IO () -> ()) -> IO () -> ()
forall a b. (a -> b) -> a -> b
$ String -> ByteString -> IO ()
BS.appendFile (Maybe String -> String
forall a. HasCallStack => Maybe a -> a
fromJust Maybe String
rewriteHistFile)
(ByteString -> IO ()) -> ByteString -> IO ()
forall a b. (a -> b) -> a -> b
$ ByteString -> ByteString
BL.toStrict
(ByteString -> ByteString) -> ByteString -> ByteString
forall a b. (a -> b) -> a -> b
$ RewriteStep -> ByteString
forall a. Binary a => a -> ByteString
encode RewriteStep :: Context -> String -> String -> Term -> Term -> RewriteStep
RewriteStep
{ t_ctx :: Context
t_ctx = TransformContext -> Context
tfContext TransformContext
ctx
, t_name :: String
t_name = String
s
, t_bndrS :: String
t_bndrS = Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
curBndr)
, t_before :: Term
t_before = Term
expr0
, t_after :: Term
t_after = Term
expr1
}
() -> RewriteMonad extra ()
forall (m :: Type -> Type) a. Monad m => a -> m a
return ()
Int
dbgFrom <- Getting Int RewriteEnv Int -> RewriteMonad extra Int
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting Int RewriteEnv Int
Lens' RewriteEnv Int
dbgTransformationsFrom
Int
dbgLimit <- Getting Int RewriteEnv Int -> RewriteMonad extra Int
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting Int RewriteEnv Int
Lens' RewriteEnv Int
dbgTransformationsLimit
let fromLimit :: Maybe (Int, Int)
fromLimit =
if (Int
dbgFrom, Int
dbgLimit) (Int, Int) -> (Int, Int) -> Bool
forall a. Eq a => a -> a -> Bool
== (Int
0, Int
forall a. Bounded a => a
maxBound)
then Maybe (Int, Int)
forall a. Maybe a
Nothing
else (Int, Int) -> Maybe (Int, Int)
forall a. a -> Maybe a
Just (Int
dbgFrom, Int
dbgLimit)
if DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Eq a => a -> a -> Bool
== DebugLevel
DebugNone
then Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
expr2
else DebugLevel
-> Set String
-> Maybe (Int, Int)
-> String
-> Term
-> Bool
-> Term
-> RewriteMonad extra Term
forall extra.
DebugLevel
-> Set String
-> Maybe (Int, Int)
-> String
-> Term
-> Bool
-> Term
-> RewriteMonad extra Term
applyDebug DebugLevel
lvl Set String
dbgTranss Maybe (Int, Int)
fromLimit String
s Term
expr0 Bool
hasChanged Term
expr2
{-# INLINE apply #-}
applyDebug
:: DebugLevel
-> Set.Set String
-> Maybe (Int, Int)
-> String
-> Term
-> Bool
-> Term
-> RewriteMonad extra Term
applyDebug :: DebugLevel
-> Set String
-> Maybe (Int, Int)
-> String
-> Term
-> Bool
-> Term
-> RewriteMonad extra Term
applyDebug DebugLevel
lvl Set String
transformations Maybe (Int, Int)
fromLimit String
name Term
exprOld Bool
hasChanged Term
exprNew
| Just (Int
from, Int
limit) <- Maybe (Int, Int)
fromLimit = do
Int
nTrans <- Getting Int (RewriteState extra) Int -> RewriteMonad extra Int
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting Int (RewriteState extra) Int
forall extra1. Lens' (RewriteState extra1) Int
transformCounter
if | Int
nTrans Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
from Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
limit ->
String -> RewriteMonad extra Term
forall a. HasCallStack => String -> a
error String
"-fclash-debug-transformations-limit exceeded"
| Int
nTrans Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
from ->
DebugLevel
-> Set String
-> Maybe (Int, Int)
-> String
-> Term
-> Bool
-> Term
-> RewriteMonad extra Term
forall extra.
DebugLevel
-> Set String
-> Maybe (Int, Int)
-> String
-> Term
-> Bool
-> Term
-> RewriteMonad extra Term
applyDebug DebugLevel
lvl Set String
transformations Maybe (Int, Int)
forall a. Maybe a
Nothing String
name Term
exprOld Bool
hasChanged Term
exprNew
| Bool
otherwise ->
Term -> RewriteMonad extra Term
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Term
exprNew
applyDebug DebugLevel
lvl Set String
transformations Maybe (Int, Int)
fromLimit String
name Term
exprOld Bool
hasChanged Term
exprNew
| Bool -> Bool
not (Set String -> Bool
forall a. Set a -> Bool
Set.null Set String
transformations) =
let newLvl :: DebugLevel
newLvl = DebugLevel -> DebugLevel -> Bool -> DebugLevel
forall a. a -> a -> Bool -> a
bool DebugLevel
DebugNone DebugLevel
lvl (String
name String -> Set String -> Bool
forall a. Ord a => a -> Set a -> Bool
`Set.member` Set String
transformations) in
DebugLevel
-> Set String
-> Maybe (Int, Int)
-> String
-> Term
-> Bool
-> Term
-> RewriteMonad extra Term
forall extra.
DebugLevel
-> Set String
-> Maybe (Int, Int)
-> String
-> Term
-> Bool
-> Term
-> RewriteMonad extra Term
applyDebug DebugLevel
newLvl Set String
forall a. Set a
Set.empty Maybe (Int, Int)
fromLimit String
name Term
exprOld Bool
hasChanged Term
exprNew
applyDebug DebugLevel
lvl Set String
_transformations Maybe (Int, Int)
_fromLimit String
name Term
exprOld Bool
hasChanged Term
exprNew =
Bool
-> String -> RewriteMonad extra Term -> RewriteMonad extra Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugAll) (String
"Tried: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
name String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" on:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
before) (RewriteMonad extra Term -> RewriteMonad extra Term)
-> RewriteMonad extra Term -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$ do
Int
nTrans <- Int -> Int
forall a. Enum a => a -> a
pred (Int -> Int) -> RewriteMonad extra Int -> RewriteMonad extra Int
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting Int (RewriteState extra) Int -> RewriteMonad extra Int
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting Int (RewriteState extra) Int
forall extra1. Lens' (RewriteState extra1) Int
transformCounter
Bool -> RewriteMonad extra () -> RewriteMonad extra ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
Monad.when (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
> DebugLevel
DebugNone Bool -> Bool -> Bool
&& Bool
hasChanged) (RewriteMonad extra () -> RewriteMonad extra ())
-> RewriteMonad extra () -> RewriteMonad extra ()
forall a b. (a -> b) -> a -> b
$ do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let beforeTy :: Type
beforeTy = TyConMap -> Term -> Type
termType TyConMap
tcm Term
exprOld
beforeFV :: Set (Var a)
beforeFV = Getting (Set (Var a)) Term (Var a) -> Term -> Set (Var a)
forall a s. Getting (Set a) s a -> s -> Set a
Lens.setOf Getting (Set (Var a)) Term (Var a)
forall a. Fold Term (Var a)
freeLocalVars Term
exprOld
afterTy :: Type
afterTy = TyConMap -> Term -> Type
termType TyConMap
tcm Term
exprNew
afterFV :: Set (Var a)
afterFV = Getting (Set (Var a)) Term (Var a) -> Term -> Set (Var a)
forall a s. Getting (Set a) s a -> s -> Set a
Lens.setOf Getting (Set (Var a)) Term (Var a)
forall a. Fold Term (Var a)
freeLocalVars Term
exprNew
newFV :: Bool
newFV = Bool -> Bool
not (Set (Var Any)
forall a. Set (Var a)
afterFV Set (Var Any) -> Set (Var Any) -> Bool
forall a. Ord a => Set a -> Set a -> Bool
`Set.isSubsetOf` Set (Var Any)
forall a. Set (Var a)
beforeFV)
accidentalShadows :: [[Id]]
accidentalShadows = Term -> [[Id]]
findAccidentialShadows Term
exprNew
Bool -> RewriteMonad extra () -> RewriteMonad extra ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
Monad.when Bool
newFV (RewriteMonad extra () -> RewriteMonad extra ())
-> RewriteMonad extra () -> RewriteMonad extra ()
forall a b. (a -> b) -> a -> b
$
String -> RewriteMonad extra ()
forall a. HasCallStack => String -> a
error ( [String] -> String
forall (t :: Type -> Type) a. Foldable t => t [a] -> [a]
concat [ $(String
curLoc)
, String
"Error when applying rewrite ", String
name
, String
" to:\n" , String
before
, String
"\nResult:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
after String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\n"
, String
"It introduces free variables."
, String
"\nBefore: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ [Var Any] -> String
forall p. PrettyPrec p => p -> String
showPpr (Set (Var Any) -> [Var Any]
forall a. Set a -> [a]
Set.toList Set (Var Any)
forall a. Set (Var a)
beforeFV)
, String
"\nAfter: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ [Var Any] -> String
forall p. PrettyPrec p => p -> String
showPpr (Set (Var Any) -> [Var Any]
forall a. Set a -> [a]
Set.toList Set (Var Any)
forall a. Set (Var a)
afterFV)
]
)
Bool -> RewriteMonad extra () -> RewriteMonad extra ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
Monad.when (Bool -> Bool
not ([[Id]] -> Bool
forall (t :: Type -> Type) a. Foldable t => t a -> Bool
null [[Id]]
accidentalShadows)) (RewriteMonad extra () -> RewriteMonad extra ())
-> RewriteMonad extra () -> RewriteMonad extra ()
forall a b. (a -> b) -> a -> b
$
String -> RewriteMonad extra ()
forall a. HasCallStack => String -> a
error ( [String] -> String
forall (t :: Type -> Type) a. Foldable t => t [a] -> [a]
concat [ $(String
curLoc)
, String
"Error when applying rewrite ", String
name
, String
" to:\n" , String
before
, String
"\nResult:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
after String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\n"
, String
"It accidentally creates shadowing let/case-bindings:\n"
, String
" ", [[Id]] -> String
forall p. PrettyPrec p => p -> String
showPpr [[Id]]
accidentalShadows, String
"\n"
, String
"This usually means that a transformation did not extend "
, String
"or incorrectly extended its InScopeSet before applying a "
, String
"substitution."
])
Bool -> String -> RewriteMonad extra () -> RewriteMonad extra ()
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugApplied Bool -> Bool -> Bool
&& (Bool -> Bool
not (TyConMap -> Type -> Type
normalizeType TyConMap
tcm Type
beforeTy Type -> Type -> Bool
`aeqType` TyConMap -> Type -> Type
normalizeType TyConMap
tcm Type
afterTy)))
( [String] -> String
forall (t :: Type -> Type) a. Foldable t => t [a] -> [a]
concat [ $(String
curLoc)
, String
"Error when applying rewrite ", String
name
, String
" to:\n" , String
before
, String
"\nResult:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
after String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\n"
, String
"Changes type from:\n", Type -> String
forall p. PrettyPrec p => p -> String
showPpr Type
beforeTy
, String
"\nto:\n", Type -> String
forall p. PrettyPrec p => p -> String
showPpr Type
afterTy
]
) (() -> RewriteMonad extra ()
forall (m :: Type -> Type) a. Monad m => a -> m a
return ())
Bool -> RewriteMonad extra () -> RewriteMonad extra ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
Monad.when (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugApplied Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
hasChanged Bool -> Bool -> Bool
&& Bool -> Bool
not (Term
exprOld Term -> Term -> Bool
`aeqTerm` Term
exprNew)) (RewriteMonad extra () -> RewriteMonad extra ())
-> RewriteMonad extra () -> RewriteMonad extra ()
forall a b. (a -> b) -> a -> b
$
String -> RewriteMonad extra ()
forall a. HasCallStack => String -> a
error (String -> RewriteMonad extra ())
-> String -> RewriteMonad extra ()
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"Expression changed without notice(" String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
name String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"): before"
String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
before String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\nafter:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
after
Bool
-> String -> RewriteMonad extra Term -> RewriteMonad extra Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugName Bool -> Bool -> Bool
&& Bool
hasChanged) (String
name String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
" {" String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Int -> String
forall a. Show a => a -> String
show Int
nTrans String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
"}") (RewriteMonad extra Term -> RewriteMonad extra Term)
-> RewriteMonad extra Term -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$
Bool
-> String -> RewriteMonad extra Term -> RewriteMonad extra Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugApplied Bool -> Bool -> Bool
&& Bool
hasChanged) (String
"Changes when applying rewrite to:\n"
String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
before String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\nResult:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
after String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\n") (RewriteMonad extra Term -> RewriteMonad extra Term)
-> RewriteMonad extra Term -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$
Bool
-> String -> RewriteMonad extra Term -> RewriteMonad extra Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugAll Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
hasChanged) (String
"No changes when applying rewrite "
String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
name String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" to:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
after String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\n") (RewriteMonad extra Term -> RewriteMonad extra Term)
-> RewriteMonad extra Term -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$
Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
exprNew
where
before :: String
before = Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
exprOld
after :: String
after = Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
exprNew
runRewrite
:: String
-> InScopeSet
-> Rewrite extra
-> Term
-> RewriteMonad extra Term
runRewrite :: String
-> InScopeSet -> Rewrite extra -> Term -> RewriteMonad extra Term
runRewrite String
name InScopeSet
is Rewrite extra
rewrite Term
expr = String -> Rewrite extra -> Rewrite extra
forall extra. String -> Rewrite extra -> Rewrite extra
apply String
name Rewrite extra
rewrite (InScopeSet -> Context -> TransformContext
TransformContext InScopeSet
is []) Term
expr
runRewriteSession :: RewriteEnv
-> RewriteState extra
-> RewriteMonad extra a
-> a
runRewriteSession :: RewriteEnv -> RewriteState extra -> RewriteMonad extra a -> a
runRewriteSession RewriteEnv
r RewriteState extra
s RewriteMonad extra a
m =
Bool -> String -> a -> a
forall a. Bool -> String -> a -> a
traceIf (RewriteEnv -> DebugLevel
_dbgLevel RewriteEnv
r DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
> DebugLevel
DebugSilent)
(String
"Clash: Applied " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show (RewriteState extra
s' RewriteState extra -> Getting Int (RewriteState extra) Int -> Int
forall s a. s -> Getting a s a -> a
^. Getting Int (RewriteState extra) Int
forall extra1. Lens' (RewriteState extra1) Int
transformCounter) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" transformations")
a
a
where
(a
a,RewriteState extra
s',Any
_) = RewriteMonad extra a
-> RewriteEnv -> RewriteState extra -> (a, RewriteState extra, Any)
forall extra a.
RewriteMonad extra a
-> RewriteEnv -> RewriteState extra -> (a, RewriteState extra, Any)
runR RewriteMonad extra a
m RewriteEnv
r RewriteState extra
s
setChanged :: RewriteMonad extra ()
setChanged :: RewriteMonad extra ()
setChanged = Any -> RewriteMonad extra ()
forall w (m :: Type -> Type). MonadWriter w m => w -> m ()
Writer.tell (Bool -> Any
Monoid.Any Bool
True)
changed :: a -> RewriteMonad extra a
changed :: a -> RewriteMonad extra a
changed a
val = do
Any -> RewriteMonad extra ()
forall w (m :: Type -> Type). MonadWriter w m => w -> m ()
Writer.tell (Bool -> Any
Monoid.Any Bool
True)
a -> RewriteMonad extra a
forall (m :: Type -> Type) a. Monad m => a -> m a
return a
val
closestLetBinder :: Context -> Maybe Id
closestLetBinder :: Context -> Maybe Id
closestLetBinder [] = Maybe Id
forall a. Maybe a
Nothing
closestLetBinder (LetBinding Id
id_ [Id]
_:Context
_) = Id -> Maybe Id
forall a. a -> Maybe a
Just Id
id_
closestLetBinder (CoreContext
_:Context
ctx) = Context -> Maybe Id
closestLetBinder Context
ctx
mkDerivedName :: TransformContext -> OccName -> TmName
mkDerivedName :: TransformContext -> OccName -> Name Term
mkDerivedName (TransformContext InScopeSet
_ Context
ctx) OccName
sf = case Context -> Maybe Id
closestLetBinder Context
ctx of
Just Id
id_ -> Name Term -> OccName -> Name Term
forall a. Name a -> OccName -> Name a
appendToName (Id -> Name Term
forall a. Var a -> Name a
varName Id
id_) (Char
'_' Char -> OccName -> OccName
`Text.cons` OccName
sf)
Maybe Id
_ -> OccName -> Int -> Name Term
forall a. OccName -> Int -> Name a
mkUnsafeInternalName OccName
sf Int
0
mkTmBinderFor
:: (MonadUnique m, MonadFail m)
=> InScopeSet
-> TyConMap
-> Name a
-> Term
-> m Id
mkTmBinderFor :: InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is TyConMap
tcm Name a
name Term
e = do
Left Id
r <- InScopeSet
-> TyConMap -> Name a -> Either Term Type -> m (Either Id TyVar)
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet
-> TyConMap -> Name a -> Either Term Type -> m (Either Id TyVar)
mkBinderFor InScopeSet
is TyConMap
tcm Name a
name (Term -> Either Term Type
forall a b. a -> Either a b
Left Term
e)
Id -> m Id
forall (m :: Type -> Type) a. Monad m => a -> m a
return Id
r
mkBinderFor
:: (MonadUnique m, MonadFail m)
=> InScopeSet
-> TyConMap
-> Name a
-> Either Term Type
-> m (Either Id TyVar)
mkBinderFor :: InScopeSet
-> TyConMap -> Name a -> Either Term Type -> m (Either Id TyVar)
mkBinderFor InScopeSet
is TyConMap
tcm Name a
name (Left Term
term) = do
Name a
name' <- InScopeSet -> Name a -> m (Name a)
forall (m :: Type -> Type) a.
MonadUnique m =>
InScopeSet -> Name a -> m (Name a)
cloneNameWithInScopeSet InScopeSet
is Name a
name
let ty :: Type
ty = TyConMap -> Term -> Type
termType TyConMap
tcm Term
term
Either Id TyVar -> m (Either Id TyVar)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id -> Either Id TyVar
forall a b. a -> Either a b
Left (Type -> Name Term -> Id
mkLocalId Type
ty (Name a -> Name Term
coerce Name a
name')))
mkBinderFor InScopeSet
is TyConMap
tcm Name a
name (Right Type
ty) = do
Name a
name' <- InScopeSet -> Name a -> m (Name a)
forall (m :: Type -> Type) a.
MonadUnique m =>
InScopeSet -> Name a -> m (Name a)
cloneNameWithInScopeSet InScopeSet
is Name a
name
let ki :: Type
ki = TyConMap -> Type -> Type
typeKind TyConMap
tcm Type
ty
Either Id TyVar -> m (Either Id TyVar)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (TyVar -> Either Id TyVar
forall a b. b -> Either a b
Right (Type -> TyName -> TyVar
mkTyVar Type
ki (Name a -> TyName
coerce Name a
name')))
mkInternalVar
:: (MonadUnique m)
=> InScopeSet
-> OccName
-> KindOrType
-> m Id
mkInternalVar :: InScopeSet -> OccName -> Type -> m Id
mkInternalVar InScopeSet
inScope OccName
name Type
ty = do
Int
i <- m Int
forall (m :: Type -> Type). MonadUnique m => m Int
getUniqueM
let nm :: Name a
nm = OccName -> Int -> Name a
forall a. OccName -> Int -> Name a
mkUnsafeInternalName OccName
name Int
i
Id -> m Id
forall (m :: Type -> Type) a. Monad m => a -> m a
return (InScopeSet -> Id -> Id
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope (Type -> Name Term -> Id
mkLocalId Type
ty Name Term
forall a. Name a
nm))
inlineBinders
:: (Term -> LetBinding -> RewriteMonad extra Bool)
-> Rewrite extra
inlineBinders :: (Term -> LetBinding -> RewriteMonad extra Bool) -> Rewrite extra
inlineBinders Term -> LetBinding -> RewriteMonad extra Bool
condition (TransformContext InScopeSet
inScope0 Context
_) expr :: Term
expr@(Letrec [LetBinding]
xes Term
res) = do
([LetBinding]
toInline,[LetBinding]
toKeep) <- (LetBinding -> RewriteMonad extra Bool)
-> [LetBinding] -> RewriteMonad extra ([LetBinding], [LetBinding])
forall (m :: Type -> Type) a.
Monad m =>
(a -> m Bool) -> [a] -> m ([a], [a])
partitionM (Term -> LetBinding -> RewriteMonad extra Bool
condition Term
expr) [LetBinding]
xes
case [LetBinding]
toInline of
[] -> Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
expr
[LetBinding]
_ -> do
let inScope1 :: InScopeSet
inScope1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
inScope0 ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
xes)
([LetBinding]
toInlRec,([LetBinding]
toKeep1,Term
res1)) =
InScopeSet
-> [LetBinding]
-> [LetBinding]
-> Term
-> ([LetBinding], ([LetBinding], Term))
substituteBinders InScopeSet
inScope1 [LetBinding]
toInline [LetBinding]
toKeep Term
res
case [LetBinding]
toInlRec [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [LetBinding]
toKeep1 of
[] -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
res1
[LetBinding]
xes1 -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
xes1 Term
res1)
inlineBinders Term -> LetBinding -> RewriteMonad extra Bool
_ TransformContext
_ Term
e = Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
isJoinPointIn :: Id
-> Term
-> Bool
isJoinPointIn :: Id -> Term -> Bool
isJoinPointIn Id
id_ Term
e = case Id -> Term -> Maybe Int
tailCalls Id
id_ Term
e of
Just Int
n | Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
1 -> Bool
True
Maybe Int
_ -> Bool
False
tailCalls :: Id
-> Term
-> Maybe Int
tailCalls :: Id -> Term -> Maybe Int
tailCalls Id
id_ = \case
Var Id
nm | Id
id_ Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
nm -> Int -> Maybe Int
forall a. a -> Maybe a
Just Int
1
| Bool
otherwise -> Int -> Maybe Int
forall a. a -> Maybe a
Just Int
0
Lam Id
_ Term
e -> Id -> Term -> Maybe Int
tailCalls Id
id_ Term
e
TyLam TyVar
_ Term
e -> Id -> Term -> Maybe Int
tailCalls Id
id_ Term
e
App Term
l Term
r -> case Id -> Term -> Maybe Int
tailCalls Id
id_ Term
r of
Just Int
0 -> Id -> Term -> Maybe Int
tailCalls Id
id_ Term
l
Maybe Int
_ -> Maybe Int
forall a. Maybe a
Nothing
TyApp Term
l Type
_ -> Id -> Term -> Maybe Int
tailCalls Id
id_ Term
l
Letrec [LetBinding]
bs Term
e ->
let ([Id]
bsIds,[Term]
bsExprs) = [LetBinding] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [LetBinding]
bs
bsTls :: [Maybe Int]
bsTls = (Term -> Maybe Int) -> [Term] -> [Maybe Int]
forall a b. (a -> b) -> [a] -> [b]
map (Id -> Term -> Maybe Int
tailCalls Id
id_) [Term]
bsExprs
bsIdsUsed :: [Id]
bsIdsUsed = ((Id, Maybe Int) -> Maybe Id) -> [(Id, Maybe Int)] -> [Id]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (\(Id
l,Maybe Int
r) -> Id -> Maybe Id
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Id
l Maybe Id -> Maybe Int -> Maybe Id
forall (f :: Type -> Type) a b. Applicative f => f a -> f b -> f a
<* Maybe Int
r) ([Id] -> [Maybe Int] -> [(Id, Maybe Int)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
bsIds [Maybe Int]
bsTls)
bsIdsTls :: [Maybe Int]
bsIdsTls = (Id -> Maybe Int) -> [Id] -> [Maybe Int]
forall a b. (a -> b) -> [a] -> [b]
map (Id -> Term -> Maybe Int
`tailCalls` Term
e) [Id]
bsIdsUsed
bsCount :: Maybe Int
bsCount = Int -> Maybe Int
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Int -> Maybe Int) -> ([Int] -> Int) -> [Int] -> Maybe Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Int] -> Int
forall (t :: Type -> Type) a. (Foldable t, Num a) => t a -> a
sum ([Int] -> Maybe Int) -> [Int] -> Maybe Int
forall a b. (a -> b) -> a -> b
$ [Maybe Int] -> [Int]
forall a. [Maybe a] -> [a]
catMaybes [Maybe Int]
bsTls
in case ((Maybe Int -> Bool) -> [Maybe Int] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all Maybe Int -> Bool
forall a. Maybe a -> Bool
isJust [Maybe Int]
bsTls) of
Bool
False -> Maybe Int
forall a. Maybe a
Nothing
Bool
True -> case ((Int -> Bool) -> [Int] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all (Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
0) ([Int] -> Bool) -> [Int] -> Bool
forall a b. (a -> b) -> a -> b
$ [Maybe Int] -> [Int]
forall a. [Maybe a] -> [a]
catMaybes [Maybe Int]
bsTls) of
Bool
False -> case (Maybe Int -> Bool) -> [Maybe Int] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all Maybe Int -> Bool
forall a. Maybe a -> Bool
isJust [Maybe Int]
bsIdsTls of
Bool
False -> Maybe Int
forall a. Maybe a
Nothing
Bool
True -> Int -> Int -> Int
forall a. Num a => a -> a -> a
(+) (Int -> Int -> Int) -> Maybe Int -> Maybe (Int -> Int)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe Int
bsCount Maybe (Int -> Int) -> Maybe Int -> Maybe Int
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Id -> Term -> Maybe Int
tailCalls Id
id_ Term
e
Bool
True -> Id -> Term -> Maybe Int
tailCalls Id
id_ Term
e
Case Term
scrut Type
_ [Alt]
alts ->
let scrutTl :: Maybe Int
scrutTl = Id -> Term -> Maybe Int
tailCalls Id
id_ Term
scrut
altsTl :: [Maybe Int]
altsTl = (Alt -> Maybe Int) -> [Alt] -> [Maybe Int]
forall a b. (a -> b) -> [a] -> [b]
map (Id -> Term -> Maybe Int
tailCalls Id
id_ (Term -> Maybe Int) -> (Alt -> Term) -> Alt -> Maybe Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Term
forall a b. (a, b) -> b
snd) [Alt]
alts
in case Maybe Int
scrutTl of
Just Int
0 | (Maybe Int -> Bool) -> [Maybe Int] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all (Maybe Int -> Maybe Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Maybe Int
forall a. Maybe a
Nothing) [Maybe Int]
altsTl -> Int -> Maybe Int
forall a. a -> Maybe a
Just ([Int] -> Int
forall (t :: Type -> Type) a. (Foldable t, Num a) => t a -> a
sum ([Maybe Int] -> [Int]
forall a. [Maybe a] -> [a]
catMaybes [Maybe Int]
altsTl))
Maybe Int
_ -> Maybe Int
forall a. Maybe a
Nothing
Term
_ -> Int -> Maybe Int
forall a. a -> Maybe a
Just Int
0
isVoidWrapper :: Term -> Bool
isVoidWrapper :: Term -> Bool
isVoidWrapper (Lam Id
bndr e :: Term
e@(Term -> (Term, [Either Term Type])
collectArgs -> (Var Id
_,[Either Term Type]
_))) =
Id
bndr Id -> Term -> Bool
`localIdDoesNotOccurIn` Term
e
isVoidWrapper Term
_ = Bool
False
substituteBinders
:: InScopeSet
-> [LetBinding]
-> [LetBinding]
-> Term
-> ([LetBinding],([LetBinding],Term))
substituteBinders :: InScopeSet
-> [LetBinding]
-> [LetBinding]
-> Term
-> ([LetBinding], ([LetBinding], Term))
substituteBinders InScopeSet
inScope [LetBinding]
toInline [LetBinding]
toKeep Term
body =
let (Subst
subst,[LetBinding]
toInlRec) = Subst -> [LetBinding] -> [LetBinding] -> (Subst, [LetBinding])
go (InScopeSet -> Subst
mkSubst InScopeSet
inScope) [] [LetBinding]
toInline
in ( (LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"substToInlRec" Subst
subst)) [LetBinding]
toInlRec
, ( (LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"substToKeep" Subst
subst)) [LetBinding]
toKeep
, HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"substBody" Subst
subst Term
body) )
where
go :: Subst -> [LetBinding] -> [LetBinding] -> (Subst, [LetBinding])
go Subst
subst [LetBinding]
inlRec [] = (Subst
subst,[LetBinding]
inlRec)
go !Subst
subst ![LetBinding]
inlRec ((Id
x,Term
e):[LetBinding]
toInl) =
let e1 :: Term
e1 = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"substInl" Subst
subst Term
e
substE :: Subst
substE = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
inScope) Id
x Term
e1
subst1 :: Subst
subst1 = Subst
subst { substTmEnv :: IdSubstEnv
substTmEnv = (Term -> Term) -> IdSubstEnv -> IdSubstEnv
forall a b. (a -> b) -> VarEnv a -> VarEnv b
mapVarEnv (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"substSubst" Subst
substE)
(Subst -> IdSubstEnv
substTmEnv Subst
subst)}
subst2 :: Subst
subst2 = Subst -> Id -> Term -> Subst
extendIdSubst Subst
subst1 Id
x Term
e1
in if Id
x Id -> Term -> Bool
`localIdOccursIn` Term
e1 then
Subst -> [LetBinding] -> [LetBinding] -> (Subst, [LetBinding])
go Subst
subst ((Id
x,Term
e1)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
inlRec) [LetBinding]
toInl
else
Subst -> [LetBinding] -> [LetBinding] -> (Subst, [LetBinding])
go Subst
subst2 [LetBinding]
inlRec [LetBinding]
toInl
liftAndSubsituteBinders
:: InScopeSet
-> [LetBinding]
-> [LetBinding]
-> Term
-> RewriteMonad extra ([LetBinding],Term)
liftAndSubsituteBinders :: InScopeSet
-> [LetBinding]
-> [LetBinding]
-> Term
-> RewriteMonad extra ([LetBinding], Term)
liftAndSubsituteBinders InScopeSet
inScope [LetBinding]
toLift [LetBinding]
toKeep Term
body = do
Subst
subst <- Subst -> [LetBinding] -> RewriteMonad extra Subst
forall extra. Subst -> [LetBinding] -> RewriteMonad extra Subst
go (InScopeSet -> Subst
mkSubst InScopeSet
inScope) [LetBinding]
toLift
([LetBinding], Term) -> RewriteMonad extra ([LetBinding], Term)
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ( (LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"liftToKeep" Subst
subst)) [LetBinding]
toKeep
, HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"keepBody" Subst
subst Term
body
)
where
go :: Subst -> [LetBinding] -> RewriteMonad extra Subst
go Subst
subst [] = Subst -> RewriteMonad extra Subst
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Subst
subst
go !Subst
subst ((Id
x,Term
e):[LetBinding]
inl) = do
let e1 :: Term
e1 = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"liftInl" Subst
subst Term
e
(Id
_,Term
e2) <- LetBinding -> RewriteMonad extra LetBinding
forall extra. LetBinding -> RewriteMonad extra LetBinding
liftBinding (Id
x,Term
e1)
let substE :: Subst
substE = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
inScope) Id
x Term
e2
subst1 :: Subst
subst1 = Subst
subst { substTmEnv :: IdSubstEnv
substTmEnv = (Term -> Term) -> IdSubstEnv -> IdSubstEnv
forall a b. (a -> b) -> VarEnv a -> VarEnv b
mapVarEnv (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"liftSubst" Subst
substE)
(Subst -> IdSubstEnv
substTmEnv Subst
subst) }
subst2 :: Subst
subst2 = Subst -> Id -> Term -> Subst
extendIdSubst Subst
subst1 Id
x Term
e2
if Id
x Id -> Term -> Bool
`localIdOccursIn` Term
e2 then do
(Id
_,SrcSpan
sp) <- Getting (Id, SrcSpan) (RewriteState extra) (Id, SrcSpan)
-> RewriteMonad extra (Id, SrcSpan)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState extra) (Id, SrcSpan)
forall extra1. Lens' (RewriteState extra1) (Id, SrcSpan)
curFun
ClashException -> RewriteMonad extra Subst
forall a e. Exception e => e -> a
throw (SrcSpan -> String -> Maybe String -> ClashException
ClashException SrcSpan
sp [I.i|
Internal error: inlineOrLiftBInders failed on:
#{showPpr (x,e)}
creating a self-recursive let-binding:
#{showPpr (x,e2)}
given the already built subtitution:
#{showDoc (clashPretty (substTmEnv subst))}
|] Maybe String
forall a. Maybe a
Nothing)
else
Subst -> [LetBinding] -> RewriteMonad extra Subst
go Subst
subst2 [LetBinding]
inl
isFromInt :: Text -> Bool
isFromInt :: OccName -> Bool
isFromInt OccName
nm = OccName
nm OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"Clash.Sized.Internal.BitVector.fromInteger##" Bool -> Bool -> Bool
||
OccName
nm OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"Clash.Sized.Internal.BitVector.fromInteger#" Bool -> Bool -> Bool
||
OccName
nm OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"Clash.Sized.Internal.Index.fromInteger#" Bool -> Bool -> Bool
||
OccName
nm OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"Clash.Sized.Internal.Signed.fromInteger#" Bool -> Bool -> Bool
||
OccName
nm OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"Clash.Sized.Internal.Unsigned.fromInteger#"
inlineOrLiftBinders
:: (LetBinding -> RewriteMonad extra Bool)
-> (Term -> LetBinding -> Bool)
-> Rewrite extra
inlineOrLiftBinders :: (LetBinding -> RewriteMonad extra Bool)
-> (Term -> LetBinding -> Bool) -> Rewrite extra
inlineOrLiftBinders LetBinding -> RewriteMonad extra Bool
condition Term -> LetBinding -> Bool
inlineOrLift (TransformContext InScopeSet
inScope0 Context
_) e :: Term
e@(Letrec [LetBinding]
bndrs Term
body) = do
([LetBinding]
toReplace,[LetBinding]
toKeep) <- (LetBinding -> RewriteMonad extra Bool)
-> [LetBinding] -> RewriteMonad extra ([LetBinding], [LetBinding])
forall (m :: Type -> Type) a.
Monad m =>
(a -> m Bool) -> [a] -> m ([a], [a])
partitionM LetBinding -> RewriteMonad extra Bool
condition [LetBinding]
bndrs
case [LetBinding]
toReplace of
[] -> Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
[LetBinding]
_ -> do
let inScope1 :: InScopeSet
inScope1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
inScope0 ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
bndrs)
let ([LetBinding]
toInline,[LetBinding]
toLift) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
partition (Term -> LetBinding -> Bool
inlineOrLift Term
e) [LetBinding]
toReplace
let ([LetBinding]
toLiftExtra,([LetBinding]
toReplace1,Term
body1)) =
InScopeSet
-> [LetBinding]
-> [LetBinding]
-> Term
-> ([LetBinding], ([LetBinding], Term))
substituteBinders InScopeSet
inScope1 [LetBinding]
toInline ([LetBinding]
toLift [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [LetBinding]
toKeep) Term
body
([LetBinding]
toLift1,[LetBinding]
toKeep1) = Int -> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. Int -> [a] -> ([a], [a])
splitAt ([LetBinding] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [LetBinding]
toLift) [LetBinding]
toReplace1
([LetBinding]
toKeep2,Term
body2) <- InScopeSet
-> [LetBinding]
-> [LetBinding]
-> Term
-> RewriteMonad extra ([LetBinding], Term)
forall extra.
InScopeSet
-> [LetBinding]
-> [LetBinding]
-> Term
-> RewriteMonad extra ([LetBinding], Term)
liftAndSubsituteBinders InScopeSet
inScope1
([LetBinding]
toLiftExtra [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [LetBinding]
toLift1)
[LetBinding]
toKeep1 Term
body1
case [LetBinding]
toKeep2 of
[] -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
body2
[LetBinding]
_ -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
toKeep2 Term
body2)
inlineOrLiftBinders LetBinding -> RewriteMonad extra Bool
_ Term -> LetBinding -> Bool
_ TransformContext
_ Term
e = Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
liftBinding :: LetBinding
-> RewriteMonad extra LetBinding
liftBinding :: LetBinding -> RewriteMonad extra LetBinding
liftBinding (var :: Id
var@Id {varName :: forall a. Var a -> Name a
varName = Name Term
idName} ,Term
e) = do
let unitFV :: Var a -> Const (UniqSet TyVar,UniqSet Id) (Var a)
unitFV :: Var a -> Const (UniqSet TyVar, UniqSet Id) (Var a)
unitFV v :: Var a
v@(Id {}) = (UniqSet TyVar, UniqSet Id)
-> Const (UniqSet TyVar, UniqSet Id) (Var a)
forall k a (b :: k). a -> Const a b
Const (UniqSet TyVar
forall a. UniqSet a
emptyUniqSet,Id -> UniqSet Id
forall a. Uniquable a => a -> UniqSet a
unitUniqSet (Var a -> Id
coerce Var a
v))
unitFV v :: Var a
v@(TyVar {}) = (UniqSet TyVar, UniqSet Id)
-> Const (UniqSet TyVar, UniqSet Id) (Var a)
forall k a (b :: k). a -> Const a b
Const (TyVar -> UniqSet TyVar
forall a. Uniquable a => a -> UniqSet a
unitUniqSet (Var a -> TyVar
coerce Var a
v),UniqSet Id
forall a. UniqSet a
emptyUniqSet)
interesting :: Var a -> Bool
interesting :: Var a -> Bool
interesting Id {idScope :: forall a. Var a -> IdScope
idScope = IdScope
GlobalId} = Bool
False
interesting v :: Var a
v@(Id {idScope :: forall a. Var a -> IdScope
idScope = IdScope
LocalId}) = Var a -> Int
forall a. Var a -> Int
varUniq Var a
v Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Id -> Int
forall a. Var a -> Int
varUniq Id
var
interesting Var a
_ = Bool
True
(UniqSet TyVar
boundFTVsSet,UniqSet Id
boundFVsSet) =
Const (UniqSet TyVar, UniqSet Id) (Var Any)
-> (UniqSet TyVar, UniqSet Id)
forall a k (b :: k). Const a b -> a
getConst (Getting
(Const (UniqSet TyVar, UniqSet Id) (Var Any)) Term (Var Any)
-> (Var Any -> Const (UniqSet TyVar, UniqSet Id) (Var Any))
-> Term
-> Const (UniqSet TyVar, UniqSet Id) (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf ((forall b. Var b -> Bool)
-> Getting
(Const (UniqSet TyVar, UniqSet Id) (Var Any)) Term (Var Any)
forall (f :: Type -> Type) a.
(Contravariant f, Applicative f) =>
(forall b. Var b -> Bool) -> (Var a -> f (Var a)) -> Term -> f Term
termFreeVars' forall b. Var b -> Bool
interesting) Var Any -> Const (UniqSet TyVar, UniqSet Id) (Var Any)
forall a. Var a -> Const (UniqSet TyVar, UniqSet Id) (Var a)
unitFV Term
e)
boundFTVs :: [TyVar]
boundFTVs = UniqSet TyVar -> [TyVar]
forall a. UniqSet a -> [a]
eltsUniqSet UniqSet TyVar
boundFTVsSet
boundFVs :: [Id]
boundFVs = UniqSet Id -> [Id]
forall a. UniqSet a -> [a]
eltsUniqSet UniqSet Id
boundFVsSet
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let newBodyTy :: Type
newBodyTy = TyConMap -> Term -> Type
termType TyConMap
tcm (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Term -> [TyVar] -> Term
mkTyLams (Term -> [Id] -> Term
mkLams Term
e [Id]
boundFVs) [TyVar]
boundFTVs
(Id
cf,SrcSpan
sp) <- Getting (Id, SrcSpan) (RewriteState extra) (Id, SrcSpan)
-> RewriteMonad extra (Id, SrcSpan)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState extra) (Id, SrcSpan)
forall extra1. Lens' (RewriteState extra1) (Id, SrcSpan)
curFun
BindingMap
binders <- Getting BindingMap (RewriteState extra) BindingMap
-> RewriteMonad extra BindingMap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting BindingMap (RewriteState extra) BindingMap
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings
Name Term
newBodyNm <-
BindingMap -> Name Term -> RewriteMonad extra (Name Term)
forall (m :: Type -> Type) a.
MonadUnique m =>
BindingMap -> Name a -> m (Name a)
cloneNameWithBindingMap
BindingMap
binders
(Name Term -> OccName -> Name Term
forall a. Name a -> OccName -> Name a
appendToName (Id -> Name Term
forall a. Var a -> Name a
varName Id
cf) (OccName
"_" OccName -> OccName -> OccName
`Text.append` Name Term -> OccName
forall a. Name a -> OccName
nameOcc Name Term
idName))
let newBodyId :: Id
newBodyId = Type -> Name Term -> Id
mkGlobalId Type
newBodyTy Name Term
newBodyNm {nameSort :: NameSort
nameSort = NameSort
Internal}
let newExpr :: Term
newExpr = Term -> [Term] -> Term
mkTmApps
(Term -> [Type] -> Term
mkTyApps (Id -> Term
Var Id
newBodyId)
((TyVar -> Type) -> [TyVar] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map TyVar -> Type
VarTy [TyVar]
boundFTVs))
((Id -> Term) -> [Id] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Id -> Term
Var [Id]
boundFVs)
inScope0 :: InScopeSet
inScope0 = VarSet -> InScopeSet
mkInScopeSet (UniqSet Id -> VarSet
coerce UniqSet Id
boundFVsSet)
inScope1 :: InScopeSet
inScope1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
inScope0 [Id
var,Id
newBodyId]
let subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
inScope1) Id
var Term
newExpr
e' :: Term
e' = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"liftBinding" Subst
subst Term
e
newBody :: Term
newBody = Term -> [TyVar] -> Term
mkTyLams (Term -> [Id] -> Term
mkLams Term
e' [Id]
boundFVs) [TyVar]
boundFTVs
[Binding Term]
aeqExisting <- (BindingMap -> [Binding Term]
forall a. UniqMap a -> [a]
eltsUniqMap (BindingMap -> [Binding Term])
-> (BindingMap -> BindingMap) -> BindingMap -> [Binding Term]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Binding Term -> Bool) -> BindingMap -> BindingMap
forall b. (b -> Bool) -> UniqMap b -> UniqMap b
filterUniqMap ((Term -> Term -> Bool
`aeqTerm` Term
newBody) (Term -> Bool) -> (Binding Term -> Term) -> Binding Term -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Binding Term -> Term
forall a. Binding a -> a
bindingTerm)) (BindingMap -> [Binding Term])
-> RewriteMonad extra BindingMap
-> RewriteMonad extra [Binding Term]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting BindingMap (RewriteState extra) BindingMap
-> RewriteMonad extra BindingMap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting BindingMap (RewriteState extra) BindingMap
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings
case [Binding Term]
aeqExisting of
[] -> do
(BindingMap -> Identity BindingMap)
-> RewriteState extra -> Identity (RewriteState extra)
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings ((BindingMap -> Identity BindingMap)
-> RewriteState extra -> Identity (RewriteState extra))
-> (BindingMap -> BindingMap) -> RewriteMonad extra ()
forall s (m :: Type -> Type) a b.
MonadState s m =>
ASetter s s a b -> (a -> b) -> m ()
%= Name Term -> Binding Term -> BindingMap -> BindingMap
forall a b. Uniquable a => a -> b -> UniqMap b -> UniqMap b
extendUniqMap Name Term
newBodyNm
(Id -> SrcSpan -> InlineSpec -> IsPrim -> Term -> Binding Term
forall a. Id -> SrcSpan -> InlineSpec -> IsPrim -> a -> Binding a
Binding
Id
newBodyId
SrcSpan
sp
#if MIN_VERSION_ghc(8,4,1)
InlineSpec
NoUserInline
#else
EmptyInlineSpec
#endif
IsPrim
IsFun
Term
newBody)
LetBinding -> RewriteMonad extra LetBinding
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id
var, Term
newExpr)
(Binding Term
b:[Binding Term]
_) ->
let newExpr' :: Term
newExpr' = Term -> [Term] -> Term
mkTmApps
(Term -> [Type] -> Term
mkTyApps (Id -> Term
Var (Id -> Term) -> Id -> Term
forall a b. (a -> b) -> a -> b
$ Binding Term -> Id
forall a. Binding a -> Id
bindingId Binding Term
b)
((TyVar -> Type) -> [TyVar] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map TyVar -> Type
VarTy [TyVar]
boundFTVs))
((Id -> Term) -> [Id] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Id -> Term
Var [Id]
boundFVs)
in LetBinding -> RewriteMonad extra LetBinding
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id
var, Term
newExpr')
liftBinding LetBinding
_ = String -> RewriteMonad extra LetBinding
forall a. HasCallStack => String -> a
error (String -> RewriteMonad extra LetBinding)
-> String -> RewriteMonad extra LetBinding
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"liftBinding: invalid core, expr bound to tyvar"
uniqAwayBinder
:: BindingMap
-> Name a
-> Name a
uniqAwayBinder :: BindingMap -> Name a -> Name a
uniqAwayBinder BindingMap
binders Name a
nm =
(Int -> Bool) -> Int -> Name a -> Name a
forall a.
(Uniquable a, ClashPretty a) =>
(Int -> Bool) -> Int -> a -> a
uniqAway' (Int -> BindingMap -> Bool
forall b. Int -> UniqMap b -> Bool
`elemUniqMapDirectly` BindingMap
binders) (Name a -> Int
forall a. Name a -> Int
nameUniq Name a
nm) Name a
nm
mkFunction
:: TmName
-> SrcSpan
-> InlineSpec
-> Term
-> RewriteMonad extra Id
mkFunction :: Name Term -> SrcSpan -> InlineSpec -> Term -> RewriteMonad extra Id
mkFunction Name Term
bndrNm SrcSpan
sp InlineSpec
inl Term
body = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let bodyTy :: Type
bodyTy = TyConMap -> Term -> Type
termType TyConMap
tcm Term
body
BindingMap
binders <- Getting BindingMap (RewriteState extra) BindingMap
-> RewriteMonad extra BindingMap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting BindingMap (RewriteState extra) BindingMap
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings
Name Term
bodyNm <- BindingMap -> Name Term -> RewriteMonad extra (Name Term)
forall (m :: Type -> Type) a.
MonadUnique m =>
BindingMap -> Name a -> m (Name a)
cloneNameWithBindingMap BindingMap
binders Name Term
bndrNm
Name Term
-> Type -> SrcSpan -> InlineSpec -> Term -> RewriteMonad extra ()
forall extra.
Name Term
-> Type -> SrcSpan -> InlineSpec -> Term -> RewriteMonad extra ()
addGlobalBind Name Term
bodyNm Type
bodyTy SrcSpan
sp InlineSpec
inl Term
body
Id -> RewriteMonad extra Id
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Type -> Name Term -> Id
mkGlobalId Type
bodyTy Name Term
bodyNm)
addGlobalBind
:: TmName
-> Type
-> SrcSpan
-> InlineSpec
-> Term
-> RewriteMonad extra ()
addGlobalBind :: Name Term
-> Type -> SrcSpan -> InlineSpec -> Term -> RewriteMonad extra ()
addGlobalBind Name Term
vNm Type
ty SrcSpan
sp InlineSpec
inl Term
body = do
let vId :: Id
vId = Type -> Name Term -> Id
mkGlobalId Type
ty Name Term
vNm
(Type
ty,Term
body) (Type, Term)
-> ((BindingMap -> Identity BindingMap)
-> RewriteState extra -> Identity (RewriteState extra))
-> (BindingMap -> Identity BindingMap)
-> RewriteState extra
-> Identity (RewriteState extra)
forall a b. NFData a => a -> b -> b
`deepseq` (BindingMap -> Identity BindingMap)
-> RewriteState extra -> Identity (RewriteState extra)
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings ((BindingMap -> Identity BindingMap)
-> RewriteState extra -> Identity (RewriteState extra))
-> (BindingMap -> BindingMap) -> RewriteMonad extra ()
forall s (m :: Type -> Type) a b.
MonadState s m =>
ASetter s s a b -> (a -> b) -> m ()
%= Name Term -> Binding Term -> BindingMap -> BindingMap
forall a b. Uniquable a => a -> b -> UniqMap b -> UniqMap b
extendUniqMap Name Term
vNm (Id -> SrcSpan -> InlineSpec -> IsPrim -> Term -> Binding Term
forall a. Id -> SrcSpan -> InlineSpec -> IsPrim -> a -> Binding a
Binding Id
vId SrcSpan
sp InlineSpec
inl IsPrim
IsFun Term
body)
cloneNameWithInScopeSet
:: (MonadUnique m)
=> InScopeSet
-> Name a
-> m (Name a)
cloneNameWithInScopeSet :: InScopeSet -> Name a -> m (Name a)
cloneNameWithInScopeSet InScopeSet
is Name a
nm = do
Int
i <- m Int
forall (m :: Type -> Type). MonadUnique m => m Int
getUniqueM
Name a -> m (Name a)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (InScopeSet -> Name a -> Name a
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
is (Name a -> Int -> Name a
forall a. Uniquable a => a -> Int -> a
setUnique Name a
nm Int
i))
cloneNameWithBindingMap
:: (MonadUnique m)
=> BindingMap
-> Name a
-> m (Name a)
cloneNameWithBindingMap :: BindingMap -> Name a -> m (Name a)
cloneNameWithBindingMap BindingMap
binders Name a
nm = do
Int
i <- m Int
forall (m :: Type -> Type). MonadUnique m => m Int
getUniqueM
Name a -> m (Name a)
forall (m :: Type -> Type) a. Monad m => a -> m a
return ((Int -> Bool) -> Int -> Name a -> Name a
forall a.
(Uniquable a, ClashPretty a) =>
(Int -> Bool) -> Int -> a -> a
uniqAway' (Int -> BindingMap -> Bool
forall b. Int -> UniqMap b -> Bool
`elemUniqMapDirectly` BindingMap
binders) Int
i (Name a -> Int -> Name a
forall a. Uniquable a => a -> Int -> a
setUnique Name a
nm Int
i))
{-# INLINE isUntranslatable #-}
isUntranslatable
:: Bool
-> Term
-> RewriteMonad extra Bool
isUntranslatable :: Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
stringRepresentable Term
tm = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
Bool -> Bool
not (Bool -> Bool)
-> RewriteMonad extra Bool -> RewriteMonad extra Bool
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Type -> Bool
representableType ((CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Type -> Bool)
-> RewriteMonad
extra
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
extra (CustomReprs -> Bool -> TyConMap -> Type -> Bool)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
extra
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
RewriteEnv
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
RewriteMonad
extra (CustomReprs -> Bool -> TyConMap -> Type -> Bool)
-> RewriteMonad extra CustomReprs
-> RewriteMonad extra (Bool -> TyConMap -> Type -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad extra CustomReprs
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
RewriteMonad extra (Bool -> TyConMap -> Type -> Bool)
-> RewriteMonad extra Bool
-> RewriteMonad extra (TyConMap -> Type -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad extra Bool
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Bool
stringRepresentable
RewriteMonad extra (TyConMap -> Type -> Bool)
-> RewriteMonad extra TyConMap -> RewriteMonad extra (Type -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> TyConMap -> RewriteMonad extra TyConMap
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure TyConMap
tcm
RewriteMonad extra (Type -> Bool)
-> RewriteMonad extra Type -> RewriteMonad extra Bool
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Type -> RewriteMonad extra Type
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (TyConMap -> Term -> Type
termType TyConMap
tcm Term
tm))
{-# INLINE isUntranslatableType #-}
isUntranslatableType
:: Bool
-> Type
-> RewriteMonad extra Bool
isUntranslatableType :: Bool -> Type -> RewriteMonad extra Bool
isUntranslatableType Bool
stringRepresentable Type
ty =
Bool -> Bool
not (Bool -> Bool)
-> RewriteMonad extra Bool -> RewriteMonad extra Bool
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Type -> Bool
representableType ((CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Type -> Bool)
-> RewriteMonad
extra
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
extra (CustomReprs -> Bool -> TyConMap -> Type -> Bool)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
extra
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
RewriteEnv
(CustomReprs
-> TyConMap
-> Type
-> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
RewriteMonad
extra (CustomReprs -> Bool -> TyConMap -> Type -> Bool)
-> RewriteMonad extra CustomReprs
-> RewriteMonad extra (Bool -> TyConMap -> Type -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad extra CustomReprs
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
RewriteMonad extra (Bool -> TyConMap -> Type -> Bool)
-> RewriteMonad extra Bool
-> RewriteMonad extra (TyConMap -> Type -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad extra Bool
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Bool
stringRepresentable
RewriteMonad extra (TyConMap -> Type -> Bool)
-> RewriteMonad extra TyConMap -> RewriteMonad extra (Type -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
RewriteMonad extra (Type -> Bool)
-> RewriteMonad extra Type -> RewriteMonad extra Bool
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Type -> RewriteMonad extra Type
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Type
ty)
mkWildValBinder
:: (MonadUnique m)
=> InScopeSet
-> Type
-> m Id
mkWildValBinder :: InScopeSet -> Type -> m Id
mkWildValBinder InScopeSet
is = InScopeSet -> OccName -> Type -> m Id
forall (m :: Type -> Type).
MonadUnique m =>
InScopeSet -> OccName -> Type -> m Id
mkInternalVar InScopeSet
is OccName
"wild"
mkSelectorCase
:: HasCallStack
=> (Functor m, MonadUnique m)
=> String
-> InScopeSet
-> TyConMap
-> Term
-> Int
-> Int
-> m Term
mkSelectorCase :: String -> InScopeSet -> TyConMap -> Term -> Int -> Int -> m Term
mkSelectorCase String
caller InScopeSet
inScope TyConMap
tcm Term
scrut Int
dcI Int
fieldI = Type -> m Term
forall (m :: Type -> Type). MonadUnique m => Type -> m Term
go (TyConMap -> Term -> Type
termType TyConMap
tcm Term
scrut)
where
go :: Type -> m Term
go (TyConMap -> Type -> Maybe Type
coreView1 TyConMap
tcm -> Just Type
ty') = Type -> m Term
go Type
ty'
go scrutTy :: Type
scrutTy@(Type -> TypeView
tyView -> TyConApp TyConName
tc [Type]
args) =
case TyCon -> [DataCon]
tyConDataCons (TyConMap -> TyConName -> TyCon
forall a b. (HasCallStack, Uniquable a) => UniqMap b -> a -> b
lookupUniqMap' TyConMap
tcm TyConName
tc) of
[] -> String -> String -> Type -> m Term
forall p a. PrettyPrec p => String -> String -> p -> a
cantCreate $(String
curLoc) (String
"TyCon has no DataCons: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ TyConName -> String
forall a. Show a => a -> String
show TyConName
tc String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" " String -> String -> String
forall a. [a] -> [a] -> [a]
++ TyConName -> String
forall p. PrettyPrec p => p -> String
showPpr TyConName
tc) Type
scrutTy
[DataCon]
dcs | Int
dcI Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> [DataCon] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [DataCon]
dcs -> String -> String -> Type -> m Term
forall p a. PrettyPrec p => String -> String -> p -> a
cantCreate $(String
curLoc) String
"DC index exceeds max" Type
scrutTy
| Bool
otherwise -> do
let dc :: DataCon
dc = String -> [DataCon] -> Int -> DataCon
forall a. HasCallStack => String -> [a] -> Int -> a
indexNote ($(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"No DC with tag: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show (Int
dcIInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)) [DataCon]
dcs (Int
dcIInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
let (Just [Type]
fieldTys) = HasCallStack =>
InScopeSet -> TyConMap -> DataCon -> [Type] -> Maybe [Type]
InScopeSet -> TyConMap -> DataCon -> [Type] -> Maybe [Type]
dataConInstArgTysE InScopeSet
inScope TyConMap
tcm DataCon
dc [Type]
args
if Int
fieldI Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= [Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Type]
fieldTys
then String -> String -> Type -> m Term
forall p a. PrettyPrec p => String -> String -> p -> a
cantCreate $(String
curLoc) String
"Field index exceed max" Type
scrutTy
else do
[Id]
wildBndrs <- (Type -> m Id) -> [Type] -> m [Id]
forall (t :: Type -> Type) (m :: Type -> Type) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet -> Type -> m Id
forall (m :: Type -> Type).
MonadUnique m =>
InScopeSet -> Type -> m Id
mkWildValBinder InScopeSet
inScope) [Type]
fieldTys
let ty :: Type
ty = String -> [Type] -> Int -> Type
forall a. HasCallStack => String -> [a] -> Int -> a
indexNote ($(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"No DC field#: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
fieldI) [Type]
fieldTys Int
fieldI
Id
selBndr <- InScopeSet -> OccName -> Type -> m Id
forall (m :: Type -> Type).
MonadUnique m =>
InScopeSet -> OccName -> Type -> m Id
mkInternalVar InScopeSet
inScope OccName
"sel" Type
ty
let bndrs :: [Id]
bndrs = Int -> [Id] -> [Id]
forall a. Int -> [a] -> [a]
take Int
fieldI [Id]
wildBndrs [Id] -> [Id] -> [Id]
forall a. [a] -> [a] -> [a]
++ [Id
selBndr] [Id] -> [Id] -> [Id]
forall a. [a] -> [a] -> [a]
++ Int -> [Id] -> [Id]
forall a. Int -> [a] -> [a]
drop (Int
fieldIInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) [Id]
wildBndrs
pat :: Pat
pat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc (DataCon -> [TyVar]
dcExtTyVars DataCon
dc) [Id]
bndrs
retVal :: Term
retVal = Term -> Type -> [Alt] -> Term
Case Term
scrut Type
ty [ (Pat
pat, Id -> Term
Var Id
selBndr) ]
Term -> m Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
retVal
go Type
scrutTy = String -> String -> Type -> m Term
forall p a. PrettyPrec p => String -> String -> p -> a
cantCreate $(String
curLoc) (String
"Type of subject is not a datatype: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Type -> String
forall p. PrettyPrec p => p -> String
showPpr Type
scrutTy) Type
scrutTy
cantCreate :: String -> String -> p -> a
cantCreate String
loc String
info p
scrutTy = String -> a
forall a. HasCallStack => String -> a
error (String -> a) -> String -> a
forall a b. (a -> b) -> a -> b
$ String
loc String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"Can't create selector " String -> String -> String
forall a. [a] -> [a] -> [a]
++ (String, Int, Int) -> String
forall a. Show a => a -> String
show (String
caller,Int
dcI,Int
fieldI) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" for: (" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
scrut String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" :: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ p -> String
forall p. PrettyPrec p => p -> String
showPpr p
scrutTy String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
")\nAdditional info: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
info
specialise :: Lens' extra (Map.Map (Id, Int, Either Term Type) Id)
-> Lens' extra (VarEnv Int)
-> Lens' extra Int
-> Rewrite extra
specialise :: Lens' extra (Map (Id, Int, Either Term Type) Id)
-> Lens' extra (VarEnv Int) -> Lens' extra Int -> Rewrite extra
specialise Lens' extra (Map (Id, Int, Either Term Type) Id)
specMapLbl Lens' extra (VarEnv Int)
specHistLbl Lens' extra Int
specLimitLbl TransformContext
ctx Term
e = case Term
e of
(TyApp Term
e1 Type
ty) -> Lens' extra (Map (Id, Int, Either Term Type) Id)
-> Lens' extra (VarEnv Int)
-> Lens' extra Int
-> TransformContext
-> Term
-> (Term, [Either Term Type], [TickInfo])
-> Either Term Type
-> RewriteMonad extra Term
forall extra.
Lens' extra (Map (Id, Int, Either Term Type) Id)
-> Lens' extra (VarEnv Int)
-> Lens' extra Int
-> TransformContext
-> Term
-> (Term, [Either Term Type], [TickInfo])
-> Either Term Type
-> RewriteMonad extra Term
specialise' Lens' extra (Map (Id, Int, Either Term Type) Id)
specMapLbl Lens' extra (VarEnv Int)
specHistLbl Lens' extra Int
specLimitLbl TransformContext
ctx Term
e (Term -> (Term, [Either Term Type], [TickInfo])
collectArgsTicks Term
e1) (Type -> Either Term Type
forall a b. b -> Either a b
Right Type
ty)
(App Term
e1 Term
e2) -> Lens' extra (Map (Id, Int, Either Term Type) Id)
-> Lens' extra (VarEnv Int)
-> Lens' extra Int
-> TransformContext
-> Term
-> (Term, [Either Term Type], [TickInfo])
-> Either Term Type
-> RewriteMonad extra Term
forall extra.
Lens' extra (Map (Id, Int, Either Term Type) Id)
-> Lens' extra (VarEnv Int)
-> Lens' extra Int
-> TransformContext
-> Term
-> (Term, [Either Term Type], [TickInfo])
-> Either Term Type
-> RewriteMonad extra Term
specialise' Lens' extra (Map (Id, Int, Either Term Type) Id)
specMapLbl Lens' extra (VarEnv Int)
specHistLbl Lens' extra Int
specLimitLbl TransformContext
ctx Term
e (Term -> (Term, [Either Term Type], [TickInfo])
collectArgsTicks Term
e1) (Term -> Either Term Type
forall a b. a -> Either a b
Left Term
e2)
Term
_ -> Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
specialise' :: Lens' extra (Map.Map (Id, Int, Either Term Type) Id)
-> Lens' extra (VarEnv Int)
-> Lens' extra Int
-> TransformContext
-> Term
-> (Term, [Either Term Type], [TickInfo])
-> Either Term Type
-> RewriteMonad extra Term
specialise' :: Lens' extra (Map (Id, Int, Either Term Type) Id)
-> Lens' extra (VarEnv Int)
-> Lens' extra Int
-> TransformContext
-> Term
-> (Term, [Either Term Type], [TickInfo])
-> Either Term Type
-> RewriteMonad extra Term
specialise' Lens' extra (Map (Id, Int, Either Term Type) Id)
specMapLbl Lens' extra (VarEnv Int)
specHistLbl Lens' extra Int
specLimitLbl (TransformContext InScopeSet
is0 Context
_) Term
e (Var Id
f, [Either Term Type]
args, [TickInfo]
ticks) Either Term Type
specArgIn = do
DebugLevel
lvl <- Getting DebugLevel RewriteEnv DebugLevel
-> RewriteMonad extra DebugLevel
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting DebugLevel RewriteEnv DebugLevel
Lens' RewriteEnv DebugLevel
dbgLevel
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
VarSet
topEnts <- Getting VarSet RewriteEnv VarSet -> RewriteMonad extra VarSet
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting VarSet RewriteEnv VarSet
Lens' RewriteEnv VarSet
topEntities
if Id
f Id -> VarSet -> Bool
forall a. Var a -> VarSet -> Bool
`elemVarSet` VarSet
topEnts
then do
case Either Term Type
specArgIn of
Left Term
_ -> Bool
-> String -> RewriteMonad extra Term -> RewriteMonad extra Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugNone) (String
"Not specializing TopEntity: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
f)) (Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e)
Right Type
tyArg -> Bool
-> String -> RewriteMonad extra Term -> RewriteMonad extra Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugApplied) (String
"Dropping type application on TopEntity: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
f) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\ntype:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Type -> String
forall p. PrettyPrec p => p -> String
showPpr Type
tyArg) (RewriteMonad extra Term -> RewriteMonad extra Term)
-> RewriteMonad extra Term -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$
let newVarTy :: Type
newVarTy = HasCallStack => TyConMap -> Type -> Type -> Type
TyConMap -> Type -> Type -> Type
piResultTy TyConMap
tcm (Id -> Type
forall a. Var a -> Type
varType Id
f) Type
tyArg
in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [Either Term Type] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (Id -> Term
Var Id
f{varType :: Type
varType = Type
newVarTy}) [TickInfo]
ticks) [Either Term Type]
args)
else do
let specArg :: Either Term Type
specArg = (Term -> Term)
-> (Type -> Type) -> Either Term Type -> Either Term Type
forall (p :: Type -> Type -> Type) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap (TyConMap -> Term -> Term
normalizeTermTypes TyConMap
tcm) (TyConMap -> Type -> Type
normalizeType TyConMap
tcm) Either Term Type
specArgIn
([Either Id TyVar]
specBndrsIn,[Either Term Type]
specVars) = Either Term Type -> ([Either Id TyVar], [Either Term Type])
specArgBndrsAndVars Either Term Type
specArg
argLen :: Int
argLen = [Either Term Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either Term Type]
args
specBndrs :: [Either Id TyVar]
specBndrs :: [Either Id TyVar]
specBndrs = (Either Id TyVar -> Either Id TyVar)
-> [Either Id TyVar] -> [Either Id TyVar]
forall a b. (a -> b) -> [a] -> [b]
map (ASetter (Either Id TyVar) (Either Id TyVar) Id Id
-> (Id -> Id) -> Either Id TyVar -> Either Id TyVar
forall s t a b. ASetter s t a b -> (a -> b) -> s -> t
Lens.over ASetter (Either Id TyVar) (Either Id TyVar) Id Id
forall a c b. Prism (Either a c) (Either b c) a b
_Left (TyConMap -> Id -> Id
normalizeId TyConMap
tcm)) [Either Id TyVar]
specBndrsIn
specAbs :: Either Term Type
specAbs :: Either Term Type
specAbs = (Term -> Either Term Type)
-> (Type -> Either Term Type)
-> Either Term Type
-> Either Term Type
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type)
-> (Term -> Term) -> Term -> Either Term Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Term -> [Either Id TyVar] -> Term
`mkAbstraction` [Either Id TyVar]
specBndrs)) (Type -> Either Term Type
forall a b. b -> Either a b
Right (Type -> Either Term Type)
-> (Type -> Type) -> Type -> Either Term Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Type
forall a. a -> a
id) Either Term Type
specArg
Maybe Id
specM <- (Id, Int, Either Term Type)
-> Map (Id, Int, Either Term Type) Id -> Maybe Id
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup (Id
f,Int
argLen,Either Term Type
specAbs) (Map (Id, Int, Either Term Type) Id -> Maybe Id)
-> RewriteMonad extra (Map (Id, Int, Either Term Type) Id)
-> RewriteMonad extra (Maybe Id)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(Map (Id, Int, Either Term Type) Id)
(RewriteState extra)
(Map (Id, Int, Either Term Type) Id)
-> RewriteMonad extra (Map (Id, Int, Either Term Type) Id)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use ((extra -> Const (Map (Id, Int, Either Term Type) Id) extra)
-> RewriteState extra
-> Const (Map (Id, Int, Either Term Type) Id) (RewriteState extra)
forall extra1 extra2.
Lens (RewriteState extra1) (RewriteState extra2) extra1 extra2
extra((extra -> Const (Map (Id, Int, Either Term Type) Id) extra)
-> RewriteState extra
-> Const (Map (Id, Int, Either Term Type) Id) (RewriteState extra))
-> ((Map (Id, Int, Either Term Type) Id
-> Const
(Map (Id, Int, Either Term Type) Id)
(Map (Id, Int, Either Term Type) Id))
-> extra -> Const (Map (Id, Int, Either Term Type) Id) extra)
-> Getting
(Map (Id, Int, Either Term Type) Id)
(RewriteState extra)
(Map (Id, Int, Either Term Type) Id)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Map (Id, Int, Either Term Type) Id
-> Const
(Map (Id, Int, Either Term Type) Id)
(Map (Id, Int, Either Term Type) Id))
-> extra -> Const (Map (Id, Int, Either Term Type) Id) extra
Lens' extra (Map (Id, Int, Either Term Type) Id)
specMapLbl)
case Maybe Id
specM of
Just Id
f' ->
Bool
-> String -> RewriteMonad extra Term -> RewriteMonad extra Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= DebugLevel
DebugApplied)
(String
"Using previous specialization of " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
f) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" on " String -> String -> String
forall a. [a] -> [a] -> [a]
++
((Term -> String) -> (Type -> String) -> Either Term Type -> String
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either Term -> String
forall p. PrettyPrec p => p -> String
showPpr Type -> String
forall p. PrettyPrec p => p -> String
showPpr) Either Term Type
specAbs String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
": " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
f')) (RewriteMonad extra Term -> RewriteMonad extra Term)
-> RewriteMonad extra Term -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$
Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad extra Term)
-> Term -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$ Term -> [Either Term Type] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (Id -> Term
Var Id
f') [TickInfo]
ticks) ([Either Term Type]
args [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type]
specVars)
Maybe Id
Nothing -> do
Maybe (Binding Term)
bodyMaybe <- (BindingMap -> Maybe (Binding Term))
-> RewriteMonad extra BindingMap
-> RewriteMonad extra (Maybe (Binding Term))
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (Name Term -> BindingMap -> Maybe (Binding Term)
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap (Id -> Name Term
forall a. Var a -> Name a
varName Id
f)) (RewriteMonad extra BindingMap
-> RewriteMonad extra (Maybe (Binding Term)))
-> RewriteMonad extra BindingMap
-> RewriteMonad extra (Maybe (Binding Term))
forall a b. (a -> b) -> a -> b
$ Getting BindingMap (RewriteState extra) BindingMap
-> RewriteMonad extra BindingMap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting BindingMap (RewriteState extra) BindingMap
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings
case Maybe (Binding Term)
bodyMaybe of
Just (Binding Id
_ SrcSpan
sp InlineSpec
inl IsPrim
_ Term
bodyTm) -> do
Maybe Int
specHistM <- Id -> VarEnv Int -> Maybe Int
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap Id
f (VarEnv Int -> Maybe Int)
-> RewriteMonad extra (VarEnv Int)
-> RewriteMonad extra (Maybe Int)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting (VarEnv Int) (RewriteState extra) (VarEnv Int)
-> RewriteMonad extra (VarEnv Int)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use ((extra -> Const (VarEnv Int) extra)
-> RewriteState extra -> Const (VarEnv Int) (RewriteState extra)
forall extra1 extra2.
Lens (RewriteState extra1) (RewriteState extra2) extra1 extra2
extra((extra -> Const (VarEnv Int) extra)
-> RewriteState extra -> Const (VarEnv Int) (RewriteState extra))
-> ((VarEnv Int -> Const (VarEnv Int) (VarEnv Int))
-> extra -> Const (VarEnv Int) extra)
-> Getting (VarEnv Int) (RewriteState extra) (VarEnv Int)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(VarEnv Int -> Const (VarEnv Int) (VarEnv Int))
-> extra -> Const (VarEnv Int) extra
Lens' extra (VarEnv Int)
specHistLbl)
Int
specLim <- Getting Int (RewriteState extra) Int -> RewriteMonad extra Int
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use ((extra -> Const Int extra)
-> RewriteState extra -> Const Int (RewriteState extra)
forall extra1 extra2.
Lens (RewriteState extra1) (RewriteState extra2) extra1 extra2
extra ((extra -> Const Int extra)
-> RewriteState extra -> Const Int (RewriteState extra))
-> ((Int -> Const Int Int) -> extra -> Const Int extra)
-> Getting Int (RewriteState extra) Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Const Int Int) -> extra -> Const Int extra
Lens' extra Int
specLimitLbl)
if Bool -> (Int -> Bool) -> Maybe Int -> Bool
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Bool
False (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
specLim) Maybe Int
specHistM
then ClashException -> RewriteMonad extra Term
forall a e. Exception e => e -> a
throw (SrcSpan -> String -> Maybe String -> ClashException
ClashException
SrcSpan
sp
([String] -> String
unlines [ String
"Hit specialisation limit " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
specLim String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" on function `" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
f) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"'.\n"
, String
"The function `" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Id -> String
forall p. PrettyPrec p => p -> String
showPpr Id
f String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"' is most likely recursive, and looks like it is being indefinitely specialized on a growing argument.\n"
, String
"Body of `" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Id -> String
forall p. PrettyPrec p => p -> String
showPpr Id
f String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"':\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
bodyTm String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\n"
, String
"Argument (in position: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
argLen String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
") that triggered termination:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ ((Term -> String) -> (Type -> String) -> Either Term Type -> String
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either Term -> String
forall p. PrettyPrec p => p -> String
showPpr Type -> String
forall p. PrettyPrec p => p -> String
showPpr) Either Term Type
specArg
, String
"Run with '-fclash-spec-limit=N' to increase the specialisation limit to N."
])
Maybe String
forall a. Maybe a
Nothing)
else do
let existingNames :: [Name a]
existingNames = Term -> [Name a]
forall a. Term -> [Name a]
collectBndrsMinusApps Term
bodyTm
newNames :: [Name a]
newNames = [ OccName -> Int -> Name a
forall a. OccName -> Int -> Name a
mkUnsafeInternalName (OccName
"pTS" OccName -> OccName -> OccName
`Text.append` String -> OccName
Text.pack (Int -> String
forall a. Show a => a -> String
show Int
n)) Int
n
| Int
n <- [(Int
0::Int)..]
]
([Either Id TyVar]
boundArgs,[Either Term Type]
argVars) <- ([Either Id TyVar] -> ([Either Id TyVar], [Either Term Type]))
-> RewriteMonad extra [Either Id TyVar]
-> RewriteMonad extra ([Either Id TyVar], [Either Term Type])
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap ([(Either Id TyVar, Either Term Type)]
-> ([Either Id TyVar], [Either Term Type])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(Either Id TyVar, Either Term Type)]
-> ([Either Id TyVar], [Either Term Type]))
-> ([Either Id TyVar] -> [(Either Id TyVar, Either Term Type)])
-> [Either Id TyVar]
-> ([Either Id TyVar], [Either Term Type])
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Either Id TyVar -> (Either Id TyVar, Either Term Type))
-> [Either Id TyVar] -> [(Either Id TyVar, Either Term Type)]
forall a b. (a -> b) -> [a] -> [b]
map ((Id -> (Either Id TyVar, Either Term Type))
-> (TyVar -> (Either Id TyVar, Either Term Type))
-> Either Id TyVar
-> (Either Id TyVar, Either Term Type)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Id -> Either Id TyVar
forall a b. a -> Either a b
Left (Id -> Either Id TyVar)
-> (Id -> Either Term Type)
-> Id
-> (Either Id TyVar, Either Term Type)
forall (a :: Type -> Type -> Type) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type)
-> (Id -> Term) -> Id -> Either Term Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Id -> Term
Var) (TyVar -> Either Id TyVar
forall a b. b -> Either a b
Right (TyVar -> Either Id TyVar)
-> (TyVar -> Either Term Type)
-> TyVar
-> (Either Id TyVar, Either Term Type)
forall (a :: Type -> Type -> Type) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& Type -> Either Term Type
forall a b. b -> Either a b
Right (Type -> Either Term Type)
-> (TyVar -> Type) -> TyVar -> Either Term Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyVar -> Type
VarTy))) (RewriteMonad extra [Either Id TyVar]
-> RewriteMonad extra ([Either Id TyVar], [Either Term Type]))
-> RewriteMonad extra [Either Id TyVar]
-> RewriteMonad extra ([Either Id TyVar], [Either Term Type])
forall a b. (a -> b) -> a -> b
$
(Name Any
-> Either Term Type -> RewriteMonad extra (Either Id TyVar))
-> [Name Any]
-> [Either Term Type]
-> RewriteMonad extra [Either Id TyVar]
forall (m :: Type -> Type) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
Monad.zipWithM
(InScopeSet
-> TyConMap
-> Name Any
-> Either Term Type
-> RewriteMonad extra (Either Id TyVar)
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet
-> TyConMap -> Name a -> Either Term Type -> m (Either Id TyVar)
mkBinderFor InScopeSet
is0 TyConMap
tcm)
([Name Any]
forall a. [Name a]
existingNames [Name Any] -> [Name Any] -> [Name Any]
forall a. [a] -> [a] -> [a]
++ [Name Any]
forall a. [Name a]
newNames)
[Either Term Type]
args
(Id
fId,InlineSpec
inl',Either Term Type
specArg') <- case Either Term Type
specArg of
Left a :: Term
a@(Term -> (Term, [Either Term Type], [TickInfo])
collectArgsTicks -> (Var Id
g,[Either Term Type]
gArgs,[TickInfo]
_gTicks)) -> if TyConMap -> Term -> Bool
isPolyFun TyConMap
tcm Term
a
then do
Maybe (Binding Term)
gTmM <- (BindingMap -> Maybe (Binding Term))
-> RewriteMonad extra BindingMap
-> RewriteMonad extra (Maybe (Binding Term))
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (Name Term -> BindingMap -> Maybe (Binding Term)
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap (Id -> Name Term
forall a. Var a -> Name a
varName Id
g)) (RewriteMonad extra BindingMap
-> RewriteMonad extra (Maybe (Binding Term)))
-> RewriteMonad extra BindingMap
-> RewriteMonad extra (Maybe (Binding Term))
forall a b. (a -> b) -> a -> b
$ Getting BindingMap (RewriteState extra) BindingMap
-> RewriteMonad extra BindingMap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting BindingMap (RewriteState extra) BindingMap
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings
(Id, InlineSpec, Either Term Type)
-> RewriteMonad extra (Id, InlineSpec, Either Term Type)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id
g,InlineSpec
-> (Binding Term -> InlineSpec)
-> Maybe (Binding Term)
-> InlineSpec
forall b a. b -> (a -> b) -> Maybe a -> b
maybe InlineSpec
inl Binding Term -> InlineSpec
forall a. Binding a -> InlineSpec
bindingSpec Maybe (Binding Term)
gTmM, Either Term Type
-> (Binding Term -> Either Term Type)
-> Maybe (Binding Term)
-> Either Term Type
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Either Term Type
specArg (Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type)
-> (Binding Term -> Term) -> Binding Term -> Either Term Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Term -> [Either Term Type] -> Term
`mkApps` [Either Term Type]
gArgs) (Term -> Term) -> (Binding Term -> Term) -> Binding Term -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Binding Term -> Term
forall a. Binding a -> a
bindingTerm) Maybe (Binding Term)
gTmM)
else (Id, InlineSpec, Either Term Type)
-> RewriteMonad extra (Id, InlineSpec, Either Term Type)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id
f,InlineSpec
inl,Either Term Type
specArg)
Either Term Type
_ -> (Id, InlineSpec, Either Term Type)
-> RewriteMonad extra (Id, InlineSpec, Either Term Type)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id
f,InlineSpec
inl,Either Term Type
specArg)
let newBody :: Term
newBody = Term -> [Either Id TyVar] -> Term
mkAbstraction (Term -> [Either Term Type] -> Term
mkApps Term
bodyTm ([Either Term Type]
argVars [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type
specArg'])) ([Either Id TyVar]
boundArgs [Either Id TyVar] -> [Either Id TyVar] -> [Either Id TyVar]
forall a. [a] -> [a] -> [a]
++ [Either Id TyVar]
specBndrs)
Id
newf <- Name Term -> SrcSpan -> InlineSpec -> Term -> RewriteMonad extra Id
forall extra.
Name Term -> SrcSpan -> InlineSpec -> Term -> RewriteMonad extra Id
mkFunction (Id -> Name Term
forall a. Var a -> Name a
varName Id
fId) SrcSpan
sp InlineSpec
inl' Term
newBody
((extra -> Identity extra)
-> RewriteState extra -> Identity (RewriteState extra)
forall extra1 extra2.
Lens (RewriteState extra1) (RewriteState extra2) extra1 extra2
extra((extra -> Identity extra)
-> RewriteState extra -> Identity (RewriteState extra))
-> ((VarEnv Int -> Identity (VarEnv Int))
-> extra -> Identity extra)
-> (VarEnv Int -> Identity (VarEnv Int))
-> RewriteState extra
-> Identity (RewriteState extra)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(VarEnv Int -> Identity (VarEnv Int)) -> extra -> Identity extra
Lens' extra (VarEnv Int)
specHistLbl) ((VarEnv Int -> Identity (VarEnv Int))
-> RewriteState extra -> Identity (RewriteState extra))
-> (VarEnv Int -> VarEnv Int) -> RewriteMonad extra ()
forall s (m :: Type -> Type) a b.
MonadState s m =>
ASetter s s a b -> (a -> b) -> m ()
%= Id -> Int -> (Int -> Int -> Int) -> VarEnv Int -> VarEnv Int
forall a b.
Uniquable a =>
a -> b -> (b -> b -> b) -> UniqMap b -> UniqMap b
extendUniqMapWith Id
f Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
(+)
((extra -> Identity extra)
-> RewriteState extra -> Identity (RewriteState extra)
forall extra1 extra2.
Lens (RewriteState extra1) (RewriteState extra2) extra1 extra2
extra((extra -> Identity extra)
-> RewriteState extra -> Identity (RewriteState extra))
-> ((Map (Id, Int, Either Term Type) Id
-> Identity (Map (Id, Int, Either Term Type) Id))
-> extra -> Identity extra)
-> (Map (Id, Int, Either Term Type) Id
-> Identity (Map (Id, Int, Either Term Type) Id))
-> RewriteState extra
-> Identity (RewriteState extra)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Map (Id, Int, Either Term Type) Id
-> Identity (Map (Id, Int, Either Term Type) Id))
-> extra -> Identity extra
Lens' extra (Map (Id, Int, Either Term Type) Id)
specMapLbl) ((Map (Id, Int, Either Term Type) Id
-> Identity (Map (Id, Int, Either Term Type) Id))
-> RewriteState extra -> Identity (RewriteState extra))
-> (Map (Id, Int, Either Term Type) Id
-> Map (Id, Int, Either Term Type) Id)
-> RewriteMonad extra ()
forall s (m :: Type -> Type) a b.
MonadState s m =>
ASetter s s a b -> (a -> b) -> m ()
%= (Id, Int, Either Term Type)
-> Id
-> Map (Id, Int, Either Term Type) Id
-> Map (Id, Int, Either Term Type) Id
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert (Id
f,Int
argLen,Either Term Type
specAbs) Id
newf
let newExpr :: Term
newExpr = Term -> [Either Term Type] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (Id -> Term
Var Id
newf) [TickInfo]
ticks) ([Either Term Type]
args [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type]
specVars)
Id
newf Id -> RewriteMonad extra Term -> RewriteMonad extra Term
forall a b. NFData a => a -> b -> b
`deepseq` Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
newExpr
Maybe (Binding Term)
Nothing -> Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
where
collectBndrsMinusApps :: Term -> [Name a]
collectBndrsMinusApps :: Term -> [Name a]
collectBndrsMinusApps = [Name a] -> [Name a]
forall a. [a] -> [a]
reverse ([Name a] -> [Name a]) -> (Term -> [Name a]) -> Term -> [Name a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Name a] -> Term -> [Name a]
forall a.
(Coercible a (Name Term), Coercible a TyName) =>
[a] -> Term -> [a]
go []
where
go :: [a] -> Term -> [a]
go [a]
bs (Lam Id
v Term
e') = [a] -> Term -> [a]
go (Name Term -> a
coerce (Id -> Name Term
forall a. Var a -> Name a
varName Id
v)a -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
bs) Term
e'
go [a]
bs (TyLam TyVar
tv Term
e') = [a] -> Term -> [a]
go (TyName -> a
coerce (TyVar -> TyName
forall a. Var a -> Name a
varName TyVar
tv)a -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
bs) Term
e'
go [a]
bs (App Term
e' Term
_) = case [a] -> Term -> [a]
go [] Term
e' of
[] -> [a]
bs
[a]
bs' -> [a] -> [a]
forall a. [a] -> [a]
init [a]
bs' [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
bs
go [a]
bs (TyApp Term
e' Type
_) = case [a] -> Term -> [a]
go [] Term
e' of
[] -> [a]
bs
[a]
bs' -> [a] -> [a]
forall a. [a] -> [a]
init [a]
bs' [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
bs
go [a]
bs Term
_ = [a]
bs
specialise' Lens' extra (Map (Id, Int, Either Term Type) Id)
_ Lens' extra (VarEnv Int)
_ Lens' extra Int
_ TransformContext
_ctx Term
_ (Term
appE,[Either Term Type]
args,[TickInfo]
ticks) (Left Term
specArg) = do
let ([Either Id TyVar]
specBndrs,[Either Term Type]
specVars) = Either Term Type -> ([Either Id TyVar], [Either Term Type])
specArgBndrsAndVars (Term -> Either Term Type
forall a b. a -> Either a b
Left Term
specArg)
newBody :: Term
newBody = Term -> [Either Id TyVar] -> Term
mkAbstraction Term
specArg [Either Id TyVar]
specBndrs
BindingMap
existing <- (Binding Term -> Bool) -> BindingMap -> BindingMap
forall b. (b -> Bool) -> UniqMap b -> UniqMap b
filterUniqMap ((Term -> Term -> Bool
`aeqTerm` Term
newBody) (Term -> Bool) -> (Binding Term -> Term) -> Binding Term -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Binding Term -> Term
forall a. Binding a -> a
bindingTerm) (BindingMap -> BindingMap)
-> RewriteMonad extra BindingMap -> RewriteMonad extra BindingMap
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting BindingMap (RewriteState extra) BindingMap
-> RewriteMonad extra BindingMap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting BindingMap (RewriteState extra) BindingMap
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings
Id
newf <- case BindingMap -> [Binding Term]
forall a. UniqMap a -> [a]
eltsUniqMap BindingMap
existing of
[] -> do (Id
cf,SrcSpan
sp) <- Getting (Id, SrcSpan) (RewriteState extra) (Id, SrcSpan)
-> RewriteMonad extra (Id, SrcSpan)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState extra) (Id, SrcSpan)
forall extra1. Lens' (RewriteState extra1) (Id, SrcSpan)
curFun
Name Term -> SrcSpan -> InlineSpec -> Term -> RewriteMonad extra Id
forall extra.
Name Term -> SrcSpan -> InlineSpec -> Term -> RewriteMonad extra Id
mkFunction (Name Term -> OccName -> Name Term
forall a. Name a -> OccName -> Name a
appendToName (Id -> Name Term
forall a. Var a -> Name a
varName Id
cf) OccName
"_specF")
SrcSpan
sp
#if MIN_VERSION_ghc(8,4,1)
InlineSpec
NoUserInline
#else
EmptyInlineSpec
#endif
Term
newBody
(Binding Term
b:[Binding Term]
_) -> Id -> RewriteMonad extra Id
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Binding Term -> Id
forall a. Binding a -> Id
bindingId Binding Term
b)
let newArg :: Either Term b
newArg = Term -> Either Term b
forall a b. a -> Either a b
Left (Term -> Either Term b) -> Term -> Either Term b
forall a b. (a -> b) -> a -> b
$ Term -> [Either Term Type] -> Term
mkApps (Id -> Term
Var Id
newf) [Either Term Type]
specVars
let newExpr :: Term
newExpr = Term -> [Either Term Type] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks Term
appE [TickInfo]
ticks) ([Either Term Type]
args [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type
forall b. Either Term b
newArg])
Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
newExpr
specialise' Lens' extra (Map (Id, Int, Either Term Type) Id)
_ Lens' extra (VarEnv Int)
_ Lens' extra Int
_ TransformContext
_ Term
e (Term, [Either Term Type], [TickInfo])
_ Either Term Type
_ = Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
normalizeTermTypes :: TyConMap -> Term -> Term
normalizeTermTypes :: TyConMap -> Term -> Term
normalizeTermTypes TyConMap
tcm Term
e = case Term
e of
Cast Term
e' Type
ty1 Type
ty2 -> Term -> Type -> Type -> Term
Cast (TyConMap -> Term -> Term
normalizeTermTypes TyConMap
tcm Term
e') (TyConMap -> Type -> Type
normalizeType TyConMap
tcm Type
ty1) (TyConMap -> Type -> Type
normalizeType TyConMap
tcm Type
ty2)
Var Id
v -> Id -> Term
Var (TyConMap -> Id -> Id
normalizeId TyConMap
tcm Id
v)
Term
_ -> Term
e
normalizeId :: TyConMap -> Id -> Id
normalizeId :: TyConMap -> Id -> Id
normalizeId TyConMap
tcm v :: Id
v@(Id {}) = Id
v {varType :: Type
varType = TyConMap -> Type -> Type
normalizeType TyConMap
tcm (Id -> Type
forall a. Var a -> Type
varType Id
v)}
normalizeId TyConMap
_ Id
tyvar = Id
tyvar
specArgBndrsAndVars
:: Either Term Type
-> ([Either Id TyVar], [Either Term Type])
specArgBndrsAndVars :: Either Term Type -> ([Either Id TyVar], [Either Term Type])
specArgBndrsAndVars Either Term Type
specArg =
let unitFV :: Var a -> Const (OSet.OLSet TyVar, OSet.OLSet Id) (Var a)
unitFV :: Var a -> Const (OLSet TyVar, OLSet Id) (Var a)
unitFV v :: Var a
v@(Id {}) = (OLSet TyVar, OLSet Id) -> Const (OLSet TyVar, OLSet Id) (Var a)
forall k a (b :: k). a -> Const a b
Const (OLSet TyVar
forall a. Monoid a => a
mempty, OSet Id -> OLSet Id
coerce (Id -> OSet Id
forall a. a -> OSet a
OSet.singleton (Var a -> Id
coerce Var a
v)))
unitFV v :: Var a
v@(TyVar {}) = (OLSet TyVar, OLSet Id) -> Const (OLSet TyVar, OLSet Id) (Var a)
forall k a (b :: k). a -> Const a b
Const (OSet TyVar -> OLSet TyVar
coerce (TyVar -> OSet TyVar
forall a. a -> OSet a
OSet.singleton (Var a -> TyVar
coerce Var a
v)), OLSet Id
forall a. Monoid a => a
mempty)
([TyVar]
specFTVs,[Id]
specFVs) = case Either Term Type
specArg of
Left Term
tm -> (OLSet TyVar -> [TyVar]
forall a. OLSet a -> [a]
OSet.toListL (OLSet TyVar -> [TyVar])
-> (OLSet Id -> [Id]) -> (OLSet TyVar, OLSet Id) -> ([TyVar], [Id])
forall (a :: Type -> Type -> Type) b c b' c'.
Arrow a =>
a b c -> a b' c' -> a (b, b') (c, c')
*** OLSet Id -> [Id]
forall a. OLSet a -> [a]
OSet.toListL) ((OLSet TyVar, OLSet Id) -> ([TyVar], [Id]))
-> (Const (OLSet TyVar, OLSet Id) (Var Any)
-> (OLSet TyVar, OLSet Id))
-> Const (OLSet TyVar, OLSet Id) (Var Any)
-> ([TyVar], [Id])
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Const (OLSet TyVar, OLSet Id) (Var Any) -> (OLSet TyVar, OLSet Id)
forall a k (b :: k). Const a b -> a
getConst (Const (OLSet TyVar, OLSet Id) (Var Any) -> ([TyVar], [Id]))
-> Const (OLSet TyVar, OLSet Id) (Var Any) -> ([TyVar], [Id])
forall a b. (a -> b) -> a -> b
$
Getting (Const (OLSet TyVar, OLSet Id) (Var Any)) Term (Var Any)
-> (Var Any -> Const (OLSet TyVar, OLSet Id) (Var Any))
-> Term
-> Const (OLSet TyVar, OLSet Id) (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (Const (OLSet TyVar, OLSet Id) (Var Any)) Term (Var Any)
forall a. Fold Term (Var a)
freeLocalVars Var Any -> Const (OLSet TyVar, OLSet Id) (Var Any)
forall a. Var a -> Const (OLSet TyVar, OLSet Id) (Var a)
unitFV Term
tm
Right Type
ty -> (UniqSet TyVar -> [TyVar]
forall a. UniqSet a -> [a]
eltsUniqSet (Getting (UniqSet TyVar) Type TyVar
-> (TyVar -> UniqSet TyVar) -> Type -> UniqSet TyVar
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet TyVar) Type TyVar
Fold Type TyVar
typeFreeVars TyVar -> UniqSet TyVar
forall a. Uniquable a => a -> UniqSet a
unitUniqSet Type
ty),[] :: [Id])
specTyBndrs :: [Either a TyVar]
specTyBndrs = (TyVar -> Either a TyVar) -> [TyVar] -> [Either a TyVar]
forall a b. (a -> b) -> [a] -> [b]
map TyVar -> Either a TyVar
forall a b. b -> Either a b
Right [TyVar]
specFTVs
specTmBndrs :: [Either Id b]
specTmBndrs = (Id -> Either Id b) -> [Id] -> [Either Id b]
forall a b. (a -> b) -> [a] -> [b]
map Id -> Either Id b
forall a b. a -> Either a b
Left [Id]
specFVs
specTyVars :: [Either a Type]
specTyVars = (TyVar -> Either a Type) -> [TyVar] -> [Either a Type]
forall a b. (a -> b) -> [a] -> [b]
map (Type -> Either a Type
forall a b. b -> Either a b
Right (Type -> Either a Type)
-> (TyVar -> Type) -> TyVar -> Either a Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyVar -> Type
VarTy) [TyVar]
specFTVs
specTmVars :: [Either Term b]
specTmVars = (Id -> Either Term b) -> [Id] -> [Either Term b]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> Either Term b
forall a b. a -> Either a b
Left (Term -> Either Term b) -> (Id -> Term) -> Id -> Either Term b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Id -> Term
Var) [Id]
specFVs
in ([Either Id TyVar]
forall a. [Either a TyVar]
specTyBndrs [Either Id TyVar] -> [Either Id TyVar] -> [Either Id TyVar]
forall a. [a] -> [a] -> [a]
++ [Either Id TyVar]
forall b. [Either Id b]
specTmBndrs,[Either Term Type]
forall a. [Either a Type]
specTyVars [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type]
forall b. [Either Term b]
specTmVars)
whnfRW
:: Bool
-> TransformContext
-> Term
-> Rewrite extra
-> RewriteMonad extra Term
whnfRW :: Bool
-> TransformContext
-> Term
-> Rewrite extra
-> RewriteMonad extra Term
whnfRW Bool
isSubj ctx :: TransformContext
ctx@(TransformContext InScopeSet
is0 Context
_) Term
e Rewrite extra
rw = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
BindingMap
bndrs <- Getting BindingMap (RewriteState extra) BindingMap
-> RewriteMonad extra BindingMap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting BindingMap (RewriteState extra) BindingMap
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings
Evaluator
eval <- Getting Evaluator RewriteEnv Evaluator
-> RewriteMonad extra Evaluator
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting Evaluator RewriteEnv Evaluator
Lens' RewriteEnv Evaluator
evaluator
Supply
ids <- Getting Supply (RewriteState extra) Supply
-> RewriteMonad extra Supply
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting Supply (RewriteState extra) Supply
forall extra1. Lens' (RewriteState extra1) Supply
uniqSupply
let (Supply
ids1,Supply
ids2) = Supply -> (Supply, Supply)
splitSupply Supply
ids
(Supply -> Identity Supply)
-> RewriteState extra -> Identity (RewriteState extra)
forall extra1. Lens' (RewriteState extra1) Supply
uniqSupply ((Supply -> Identity Supply)
-> RewriteState extra -> Identity (RewriteState extra))
-> Supply -> RewriteMonad extra ()
forall s (m :: Type -> Type) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
Lens..= Supply
ids2
#if EXPERIMENTAL_EVALUATOR
(i, _) <- Lens.use curFun
heap <- Lens.use ioHeap
addr <- Lens.use ioAddr
fuel <- Lens.view fuelLimit
let genv = mkGlobalEnv bndrs tcm is0 ids1 fuel heap addr
case unsafePerformIO (nf eval genv isSubj i e) of
(!e', !genv') -> do
ioHeap Lens..= genvHeap genv'
ioAddr Lens..= genvAddr genv'
rw (ctx { tfInScope = genvInScope genv' }) e'
#else
PrimHeap
gh <- Getting PrimHeap (RewriteState extra) PrimHeap
-> RewriteMonad extra PrimHeap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting PrimHeap (RewriteState extra) PrimHeap
forall extra1. Lens' (RewriteState extra1) PrimHeap
globalHeap
case Evaluator
-> BindingMap
-> TyConMap
-> PrimHeap
-> Supply
-> InScopeSet
-> Bool
-> Term
-> (PrimHeap, IdSubstEnv, Term)
whnf' Evaluator
eval BindingMap
bndrs TyConMap
tcm PrimHeap
gh Supply
ids1 InScopeSet
is0 Bool
isSubj Term
e of
(!PrimHeap
gh1,IdSubstEnv
ph,Term
v) -> do
(PrimHeap -> Identity PrimHeap)
-> RewriteState extra -> Identity (RewriteState extra)
forall extra1. Lens' (RewriteState extra1) PrimHeap
globalHeap ((PrimHeap -> Identity PrimHeap)
-> RewriteState extra -> Identity (RewriteState extra))
-> PrimHeap -> RewriteMonad extra ()
forall s (m :: Type -> Type) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
Lens..= PrimHeap
gh1
TyConMap -> IdSubstEnv -> Rewrite extra -> Rewrite extra
forall extra.
TyConMap -> IdSubstEnv -> Rewrite extra -> Rewrite extra
bindPureHeap TyConMap
tcm IdSubstEnv
ph Rewrite extra
rw TransformContext
ctx Term
v
#endif
{-# SCC whnfRW #-}
#if !EXPERIMENTAL_EVALUATOR
bindPureHeap
:: TyConMap
-> PureHeap
-> Rewrite extra
-> Rewrite extra
bindPureHeap :: TyConMap -> IdSubstEnv -> Rewrite extra -> Rewrite extra
bindPureHeap TyConMap
tcm IdSubstEnv
heap Rewrite extra
rw ctx0 :: TransformContext
ctx0@(TransformContext InScopeSet
is0 Context
hist) Term
e = do
(Term
e1, Any -> Bool
Monoid.getAny -> Bool
hasChanged) <- RewriteMonad extra Term -> RewriteMonad extra (Term, Any)
forall w (m :: Type -> Type) a. MonadWriter w m => m a -> m (a, w)
Writer.listen (RewriteMonad extra Term -> RewriteMonad extra (Term, Any))
-> RewriteMonad extra Term -> RewriteMonad extra (Term, Any)
forall a b. (a -> b) -> a -> b
$ Rewrite extra
rw TransformContext
ctx Term
e
if Bool
hasChanged Bool -> Bool -> Bool
&& Bool -> Bool
not ([LetBinding] -> Bool
forall (t :: Type -> Type) a. Foldable t => t a -> Bool
null [LetBinding]
bndrs) then do
BindingMap
bs <- Getting BindingMap (RewriteState extra) BindingMap
-> RewriteMonad extra BindingMap
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting BindingMap (RewriteState extra) BindingMap
forall extra1. Lens' (RewriteState extra1) BindingMap
bindings
(Term -> LetBinding -> RewriteMonad extra Bool) -> Rewrite extra
forall extra.
(Term -> LetBinding -> RewriteMonad extra Bool) -> Rewrite extra
inlineBinders (BindingMap -> Term -> LetBinding -> RewriteMonad extra Bool
forall extra (m :: Type -> Type) p a.
MonadState (RewriteState extra) m =>
BindingMap -> p -> (a, Term) -> m Bool
inlineTest BindingMap
bs) TransformContext
ctx0 ([LetBinding] -> Term -> Term
Letrec [LetBinding]
bndrs Term
e1) RewriteMonad extra Term
-> (Term -> RewriteMonad extra Term) -> RewriteMonad extra Term
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
e2 :: Term
e2@(Letrec [LetBinding]
bnders1 Term
e3) ->
Term -> RewriteMonad extra Term
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Term -> Maybe Term -> Term
forall a. a -> Maybe a -> a
fromMaybe Term
e2 ([LetBinding] -> Term -> Maybe Term
removeUnusedBinders [LetBinding]
bnders1 Term
e3))
Term
e2 ->
Term -> RewriteMonad extra Term
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Term
e2
else
Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e1
where
heapIds :: [Id]
heapIds = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
bndrs
is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [Id]
heapIds
ctx :: TransformContext
ctx = InScopeSet -> Context -> TransformContext
TransformContext InScopeSet
is1 ([Id] -> CoreContext
LetBody [Id]
heapIds CoreContext -> Context -> Context
forall a. a -> [a] -> [a]
: Context
hist)
bndrs :: [LetBinding]
bndrs = ((Int, Term) -> LetBinding) -> [(Int, Term)] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map (Int, Term) -> LetBinding
toLetBinding ([(Int, Term)] -> [LetBinding]) -> [(Int, Term)] -> [LetBinding]
forall a b. (a -> b) -> a -> b
$ IdSubstEnv -> [(Int, Term)]
forall a. UniqMap a -> [(Int, a)]
toListUniqMap IdSubstEnv
heap
toLetBinding :: (Unique,Term) -> LetBinding
toLetBinding :: (Int, Term) -> LetBinding
toLetBinding (Int
uniq,Term
term) = (Id
nm, Term
term)
where
ty :: Type
ty = TyConMap -> Term -> Type
termType TyConMap
tcm Term
term
nm :: Id
nm = Type -> Name Term -> Id
mkLocalId Type
ty (OccName -> Int -> Name Term
forall a. OccName -> Int -> Name a
mkUnsafeSystemName OccName
"x" Int
uniq)
inlineTest :: BindingMap -> p -> (a, Term) -> m Bool
inlineTest BindingMap
bs p
_ (a
_, Term -> Term
stripTicks -> Term
e_) = Lens' (RewriteState extra) (VarEnv Bool)
-> BindingMap -> Term -> m Bool
forall s (m :: Type -> Type).
(HasCallStack, MonadState s m) =>
Lens' s (VarEnv Bool) -> BindingMap -> Term -> m Bool
isWorkFree forall extra1. Lens' (RewriteState extra1) (VarEnv Bool)
Lens' (RewriteState extra) (VarEnv Bool)
workFreeBinders BindingMap
bs Term
e_
#endif
removeUnusedBinders
:: [LetBinding]
-> Term
-> Maybe Term
removeUnusedBinders :: [LetBinding] -> Term -> Maybe Term
removeUnusedBinders [LetBinding]
binds Term
body =
case VarEnv LetBinding -> [LetBinding]
forall a. UniqMap a -> [a]
eltsVarEnv VarEnv LetBinding
used of
[] -> Term -> Maybe Term
forall a. a -> Maybe a
Just Term
body
[LetBinding]
qqL | Bool -> Bool
not ([LetBinding] -> [LetBinding] -> Bool
forall a b. [a] -> [b] -> Bool
List.equalLength [LetBinding]
qqL [LetBinding]
binds)
-> Term -> Maybe Term
forall a. a -> Maybe a
Just ([LetBinding] -> Term -> Term
Letrec [LetBinding]
qqL Term
body)
| Bool
otherwise
-> Maybe Term
forall a. Maybe a
Nothing
where
bodyFVs :: VarSet
bodyFVs = Getting VarSet Term Id -> (Id -> VarSet) -> Term -> VarSet
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting VarSet Term Id
Fold Term Id
freeLocalIds Id -> VarSet
forall a. Var a -> VarSet
unitVarSet Term
body
used :: VarEnv LetBinding
used = (VarEnv LetBinding -> Var Any -> VarEnv LetBinding)
-> VarEnv LetBinding -> [Var Any] -> VarEnv LetBinding
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' VarEnv LetBinding -> Var Any -> VarEnv LetBinding
collectUsed VarEnv LetBinding
forall a. VarEnv a
emptyVarEnv (VarSet -> [Var Any]
eltsVarSet VarSet
bodyFVs)
bindsEnv :: VarEnv LetBinding
bindsEnv = [(Id, LetBinding)] -> VarEnv LetBinding
forall a b. [(Var a, b)] -> VarEnv b
mkVarEnv ((LetBinding -> (Id, LetBinding))
-> [LetBinding] -> [(Id, LetBinding)]
forall a b. (a -> b) -> [a] -> [b]
map (\(Id
x,Term
e0) -> (Id
x,(Id
x,Term
e0))) [LetBinding]
binds)
collectUsed :: VarEnv LetBinding -> Var Any -> VarEnv LetBinding
collectUsed VarEnv LetBinding
env Var Any
v =
if Var Any
v Var Any -> VarEnv LetBinding -> Bool
forall a b. Var a -> VarEnv b -> Bool
`elemVarEnv` VarEnv LetBinding
env then
VarEnv LetBinding
env
else
case Var Any -> VarEnv LetBinding -> Maybe LetBinding
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Var Any
v VarEnv LetBinding
bindsEnv of
Just (Id
x,Term
e0) ->
let eFVs :: VarSet
eFVs = Getting VarSet Term Id -> (Id -> VarSet) -> Term -> VarSet
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting VarSet Term Id
Fold Term Id
freeLocalIds Id -> VarSet
forall a. Var a -> VarSet
unitVarSet Term
e0
in (VarEnv LetBinding -> Var Any -> VarEnv LetBinding)
-> VarEnv LetBinding -> [Var Any] -> VarEnv LetBinding
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' VarEnv LetBinding -> Var Any -> VarEnv LetBinding
collectUsed
(Id -> LetBinding -> VarEnv LetBinding -> VarEnv LetBinding
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv Id
x (Id
x,Term
e0) VarEnv LetBinding
env)
(VarSet -> [Var Any]
eltsVarSet VarSet
eFVs)
Maybe LetBinding
Nothing -> VarEnv LetBinding
env