{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
#include "../../ClashDebug.h"
module Clash.Core.Subst
(
TvSubst (..)
, TvSubstEnv
, extendTvSubst
, extendTvSubstList
, substTy
, substTyWith
, substTyInVar
, substGlobalsInExistentials
, substInExistentials
, substInExistentialsList
, Subst (..)
, mkSubst
, mkTvSubst
, extendInScopeId
, extendInScopeIdList
, extendIdSubst
, extendIdSubstList
, extendGblSubstList
, substTm
, maybeSubstTm
, substAlt
, substId
, deShadowTerm
, deShadowAlt
, freshenTm
, deshadowLetExpr
, aeqType
, aeqTerm
, eqTerm
, eqType
)
where
import Data.Coerce (coerce)
#if MIN_VERSION_prettyprinter(1,7,0)
import Prettyprinter
#else
import Data.Text.Prettyprint.Doc
#endif
import Data.Hashable (Hashable (hashWithSalt))
import qualified Data.List as List
import qualified Data.List.Extra as List
import Data.Ord (comparing)
import GHC.Stack (HasCallStack)
import GHC.SrcLoc.Extra ()
import GHC.TypeLits
(TypeError, ErrorMessage (Text, (:<>:)))
import Clash.Core.HasFreeVars
import Clash.Core.Pretty (ppr, fromPpr)
import Clash.Core.Term
(Bind(..), Pat (..), Term (..), TickInfo (..), PrimInfo(primName))
import Clash.Core.Type (Type (..))
import Clash.Core.VarEnv
import Clash.Core.Var (Id, Var (..), TyVar, isGlobalId)
import qualified Clash.Data.UniqMap as UniqMap
import Clash.Debug (debugIsOn)
import Clash.Util
import Clash.Pretty
type TvSubstEnv = VarEnv Type
data TvSubst
= TvSubst InScopeSet
TvSubstEnv
instance ClashPretty TvSubst where
clashPretty :: TvSubst -> Doc ()
clashPretty (TvSubst InScopeSet
ins TvSubstEnv
tenv) =
Doc () -> Doc ()
forall ann. Doc ann -> Doc ann
brackets (Doc () -> Doc ()) -> Doc () -> Doc ()
forall a b. (a -> b) -> a -> b
$ [Doc ()] -> Doc ()
forall ann. [Doc ann] -> Doc ann
sep [ Doc ()
"TvSubst"
, Int -> Doc () -> Doc ()
forall ann. Int -> Doc ann -> Doc ann
nest Int
2 (Doc ()
"In scope:" Doc () -> Doc () -> Doc ()
forall ann. Doc ann -> Doc ann -> Doc ann
<+> InScopeSet -> Doc ()
forall a. ClashPretty a => a -> Doc ()
clashPretty InScopeSet
ins)
, Int -> Doc () -> Doc ()
forall ann. Int -> Doc ann -> Doc ann
nest Int
2 (Doc ()
"Type env:" Doc () -> Doc () -> Doc ()
forall ann. Doc ann -> Doc ann -> Doc ann
<+> TvSubstEnv -> Doc ()
forall a. ClashPretty a => a -> Doc ()
clashPretty TvSubstEnv
tenv)]
type IdSubstEnv = VarEnv Term
data Subst
= Subst
{ Subst -> InScopeSet
substInScope :: InScopeSet
, Subst -> IdSubstEnv
substTmEnv :: IdSubstEnv
, Subst -> TvSubstEnv
substTyEnv :: TvSubstEnv
, Subst -> IdSubstEnv
substGblEnv :: IdSubstEnv
}
emptySubst
:: Subst
emptySubst :: Subst
emptySubst = InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
emptyInScopeSet IdSubstEnv
forall a. VarEnv a
emptyVarEnv TvSubstEnv
forall a. VarEnv a
emptyVarEnv IdSubstEnv
forall a. VarEnv a
emptyVarEnv
mkSubst
:: InScopeSet
-> Subst
mkSubst :: InScopeSet -> Subst
mkSubst InScopeSet
is = InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
forall a. VarEnv a
emptyVarEnv TvSubstEnv
forall a. VarEnv a
emptyVarEnv IdSubstEnv
forall a. VarEnv a
emptyVarEnv
mkTvSubst
:: InScopeSet
-> VarEnv Type
-> Subst
mkTvSubst :: InScopeSet -> TvSubstEnv -> Subst
mkTvSubst InScopeSet
is TvSubstEnv
env = InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
forall a. VarEnv a
emptyVarEnv TvSubstEnv
env IdSubstEnv
forall a. VarEnv a
emptyVarEnv
zipTvSubst
:: [TyVar]
-> [Type]
-> Subst
zipTvSubst :: [TyVar] -> [Type] -> Subst
zipTvSubst [TyVar]
tvs [Type]
tys
| Bool
debugIsOn
, Bool -> Bool
not ([TyVar] -> [Type] -> Bool
forall a b. [a] -> [b] -> Bool
List.equalLength [TyVar]
tvs [Type]
tys)
= String -> Doc ClashAnnotation -> Subst -> Subst
forall ann a. String -> Doc ann -> a -> a
pprTrace String
"zipTvSubst" ([TyVar] -> Doc ClashAnnotation
forall p. PrettyPrec p => p -> Doc ClashAnnotation
ppr [TyVar]
tvs Doc ClashAnnotation -> Doc ClashAnnotation -> Doc ClashAnnotation
forall a. Semigroup a => a -> a -> a
<> Doc ClashAnnotation
forall ann. Doc ann
line Doc ClashAnnotation -> Doc ClashAnnotation -> Doc ClashAnnotation
forall a. Semigroup a => a -> a -> a
<> [Type] -> Doc ClashAnnotation
forall p. PrettyPrec p => p -> Doc ClashAnnotation
ppr [Type]
tys) Subst
emptySubst
| Bool
otherwise
= InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst (VarSet -> InScopeSet
mkInScopeSet ([Type] -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf [Type]
tys)) IdSubstEnv
forall a. VarEnv a
emptyVarEnv TvSubstEnv
tenv IdSubstEnv
forall a. VarEnv a
emptyVarEnv
where
tenv :: TvSubstEnv
tenv = [TyVar] -> [Type] -> TvSubstEnv
zipTyEnv [TyVar]
tvs [Type]
tys
zipTyEnv
:: [TyVar]
-> [Type]
-> VarEnv Type
zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv
zipTyEnv [TyVar]
tvs [Type]
tys = [(TyVar, Type)] -> TvSubstEnv
forall a b. [(Var a, b)] -> VarEnv b
mkVarEnv ([TyVar] -> [Type] -> [(TyVar, Type)]
forall a b. HasCallStack => [a] -> [b] -> [(a, b)]
List.zipEqual [TyVar]
tvs [Type]
tys)
extendIdSubst
:: Subst
-> Id
-> Term
-> Subst
extendIdSubst :: Subst -> Id -> Term -> Subst
extendIdSubst (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) Id
i Term
e =
InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is (Id -> Term -> IdSubstEnv -> IdSubstEnv
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv Id
i Term
e IdSubstEnv
env) TvSubstEnv
tenv IdSubstEnv
genv
extendIdSubstList
:: Subst
-> [(Id,Term)]
-> Subst
extendIdSubstList :: Subst -> [(Id, Term)] -> Subst
extendIdSubstList (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) [(Id, Term)]
es =
InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is (IdSubstEnv -> [(Id, Term)] -> IdSubstEnv
forall a b. VarEnv a -> [(Var b, a)] -> VarEnv a
extendVarEnvList IdSubstEnv
env [(Id, Term)]
es) TvSubstEnv
tenv IdSubstEnv
genv
extendGblSubstList
:: Subst
-> [(Id,Term)]
-> Subst
extendGblSubstList :: Subst -> [(Id, Term)] -> Subst
extendGblSubstList (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) [(Id, Term)]
es =
InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv (IdSubstEnv -> [(Id, Term)] -> IdSubstEnv
forall a b. VarEnv a -> [(Var b, a)] -> VarEnv a
extendVarEnvList IdSubstEnv
genv [(Id, Term)]
es)
extendTvSubst
:: Subst
-> TyVar
-> Type
-> Subst
extendTvSubst :: Subst -> TyVar -> Type -> Subst
extendTvSubst (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) TyVar
tv Type
t =
InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
env (TyVar -> Type -> TvSubstEnv -> TvSubstEnv
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv TyVar
tv Type
t TvSubstEnv
tenv) IdSubstEnv
genv
extendTvSubstList
:: Subst
-> [(TyVar, Type)]
-> Subst
extendTvSubstList :: Subst -> [(TyVar, Type)] -> Subst
extendTvSubstList (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) [(TyVar, Type)]
ts =
InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
env (TvSubstEnv -> [(TyVar, Type)] -> TvSubstEnv
forall a b. VarEnv a -> [(Var b, a)] -> VarEnv a
extendVarEnvList TvSubstEnv
tenv [(TyVar, Type)]
ts) IdSubstEnv
genv
extendInScopeId
:: Subst
-> Id
-> Subst
extendInScopeId :: Subst -> Id -> Subst
extendInScopeId (Subst InScopeSet
inScope IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) Id
id' =
InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
inScope' IdSubstEnv
env' TvSubstEnv
tenv IdSubstEnv
genv
where
inScope' :: InScopeSet
inScope' = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
inScope Id
id'
env' :: IdSubstEnv
env' = IdSubstEnv -> Id -> IdSubstEnv
forall a b. VarEnv a -> Var b -> VarEnv a
delVarEnv IdSubstEnv
env Id
id'
extendInScopeIdList
:: Subst
-> [Id]
-> Subst
extendInScopeIdList :: Subst -> [Id] -> Subst
extendInScopeIdList (Subst InScopeSet
inScope IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) [Id]
ids =
InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
inScope' IdSubstEnv
env' TvSubstEnv
tenv IdSubstEnv
genv
where
inScope' :: InScopeSet
inScope' = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
inScope [Id]
ids
env' :: IdSubstEnv
env' = IdSubstEnv -> [Id] -> IdSubstEnv
forall a b. VarEnv a -> [Var b] -> VarEnv a
delVarEnvList IdSubstEnv
env [Id]
ids
substTy
:: HasCallStack
=> Subst
-> Type
-> Type
substTy :: Subst -> Type -> Type
substTy (Subst InScopeSet
inScope IdSubstEnv
_ TvSubstEnv
tvS IdSubstEnv
_) Type
ty
| TvSubstEnv -> Bool
forall a. VarEnv a -> Bool
nullVarEnv TvSubstEnv
tvS
= Type
ty
| Bool
otherwise
= TvSubst -> [Type] -> Type -> Type
forall a. HasCallStack => TvSubst -> [Type] -> a -> a
checkValidSubst TvSubst
s' [Type
ty] (HasCallStack => TvSubst -> Type -> Type
TvSubst -> Type -> Type
substTy' TvSubst
s' Type
ty)
where
s' :: TvSubst
s' = InScopeSet -> TvSubstEnv -> TvSubst
TvSubst InScopeSet
inScope TvSubstEnv
tvS
substTyInVar
:: HasCallStack
=> Subst
-> Var a
-> Var a
substTyInVar :: Subst -> Var a -> Var a
substTyInVar Subst
subst Var a
tyVar =
Var a
tyVar { varType :: Type
varType = (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst (Var a -> Type
forall a. Var a -> Type
varType Var a
tyVar)) }
substTyUnchecked
:: HasCallStack
=> TvSubst
-> Type
-> Type
substTyUnchecked :: TvSubst -> Type -> Type
substTyUnchecked subst :: TvSubst
subst@(TvSubst InScopeSet
_ TvSubstEnv
tvS) Type
ty
| TvSubstEnv -> Bool
forall a. VarEnv a -> Bool
nullVarEnv TvSubstEnv
tvS
= Type
ty
| Bool
otherwise
= HasCallStack => TvSubst -> Type -> Type
TvSubst -> Type -> Type
substTy' TvSubst
subst Type
ty
substGlobalsInExistentials
:: HasCallStack
=> InScopeSet
-> [TyVar]
-> [(TyVar, Type)]
-> [TyVar]
substGlobalsInExistentials :: InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substGlobalsInExistentials InScopeSet
is [TyVar]
exts [(TyVar, Type)]
substs0 = [TyVar]
result
where
iss :: [InScopeSet]
iss = (InScopeSet -> TyVar -> InScopeSet)
-> InScopeSet -> [TyVar] -> [InScopeSet]
forall b a. (b -> a -> b) -> b -> [a] -> [b]
scanl InScopeSet -> TyVar -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is [TyVar]
exts
substs1 :: [Subst]
substs1 = (InScopeSet -> Subst) -> [InScopeSet] -> [Subst]
forall a b. (a -> b) -> [a] -> [b]
map (\InScopeSet
is_ -> Subst -> [(TyVar, Type)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is_) [(TyVar, Type)]
substs0) [InScopeSet]
iss
result :: [TyVar]
result = (Subst -> TyVar -> TyVar) -> [Subst] -> [TyVar] -> [TyVar]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Subst -> TyVar -> TyVar
forall a. HasCallStack => Subst -> Var a -> Var a
substTyInVar [Subst]
substs1 [TyVar]
exts
substInExistentialsList
:: HasCallStack
=> InScopeSet
-> [TyVar]
-> [(TyVar, Type)]
-> [TyVar]
substInExistentialsList :: InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substInExistentialsList InScopeSet
is [TyVar]
exts [(TyVar, Type)]
substs =
([TyVar] -> (TyVar, Type) -> [TyVar])
-> [TyVar] -> [(TyVar, Type)] -> [TyVar]
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (HasCallStack => InScopeSet -> [TyVar] -> (TyVar, Type) -> [TyVar]
InScopeSet -> [TyVar] -> (TyVar, Type) -> [TyVar]
substInExistentials InScopeSet
is) [TyVar]
exts [(TyVar, Type)]
substs
substInExistentials
:: HasCallStack
=> InScopeSet
-> [TyVar]
-> (TyVar, Type)
-> [TyVar]
substInExistentials :: InScopeSet -> [TyVar] -> (TyVar, Type) -> [TyVar]
substInExistentials InScopeSet
is [TyVar]
exts subst :: (TyVar, Type)
subst@(TyVar
typeVar, Type
_type) =
case TyVar -> [TyVar] -> [Int]
forall a. Eq a => a -> [a] -> [Int]
List.elemIndices TyVar
typeVar [TyVar]
exts of
[] ->
HasCallStack => InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substGlobalsInExistentials InScopeSet
is [TyVar]
exts [(TyVar, Type)
subst]
([Int] -> Int
forall a. [a] -> a
last -> Int
i) ->
Int -> [TyVar] -> [TyVar]
forall a. Int -> [a] -> [a]
take (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) [TyVar]
exts [TyVar] -> [TyVar] -> [TyVar]
forall a. [a] -> [a] -> [a]
++ HasCallStack => InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substGlobalsInExistentials InScopeSet
is (Int -> [TyVar] -> [TyVar]
forall a. Int -> [a] -> [a]
drop (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) [TyVar]
exts) [(TyVar, Type)
subst]
checkValidSubst
:: HasCallStack
=> TvSubst
-> [Type]
-> a
-> a
checkValidSubst :: TvSubst -> [Type] -> a -> a
checkValidSubst subst :: TvSubst
subst@(TvSubst InScopeSet
inScope TvSubstEnv
tenv) [Type]
tys a
a =
WARN( not (isValidSubst subst),
"inScope" <+> clashPretty inScope <> line <>
"tenv" <+> clashPretty tenv <> line <>
"tenvFVs" <+> clashPretty (freeVarsOf tenv) <> line <>
"tys" <+> fromPpr tys)
WARN( not tysFVsInSope,
"inScope" <+> clashPretty inScope <> line <>
"tenv" <+> clashPretty tenv <> line <>
"tys" <+> fromPpr tys <> line <>
"needsInScope" <+> clashPretty needsInScope)
a
a
where
needsInScope :: VarSet
needsInScope = (Int -> Type -> VarSet -> VarSet) -> VarSet -> TvSubstEnv -> VarSet
forall a b. (Int -> a -> b -> b) -> b -> UniqMap a -> b
UniqMap.foldrWithUnique (\Int
k Type
_ VarSet
s -> Int -> VarSet -> VarSet
delVarSetByKey Int
k VarSet
s)
([Type] -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf [Type]
tys)
TvSubstEnv
tenv
tysFVsInSope :: Bool
tysFVsInSope = VarSet
needsInScope VarSet -> InScopeSet -> Bool
`varSetInScope` InScopeSet
inScope
isValidSubst
:: TvSubst
-> Bool
isValidSubst :: TvSubst -> Bool
isValidSubst (TvSubst InScopeSet
inScope TvSubstEnv
tenv) = VarSet
tenvFVs VarSet -> InScopeSet -> Bool
`varSetInScope` InScopeSet
inScope
where
tenvFVs :: VarSet
tenvFVs = TvSubstEnv -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf TvSubstEnv
tenv
substTy'
:: HasCallStack
=> TvSubst
-> Type
-> Type
substTy' :: TvSubst -> Type -> Type
substTy' TvSubst
subst = Type -> Type
go where
go :: Type -> Type
go = \case
VarTy TyVar
tv -> TvSubst -> TyVar -> Type
substTyVar TvSubst
subst TyVar
tv
ForAllTy TyVar
tv Type
ty -> case TvSubst -> TyVar -> (TvSubst, TyVar)
substTyVarBndr TvSubst
subst TyVar
tv of
(TvSubst
subst', TyVar
tv') -> TyVar -> Type -> Type
ForAllTy TyVar
tv' (HasCallStack => TvSubst -> Type -> Type
TvSubst -> Type -> Type
substTy' TvSubst
subst' Type
ty)
AppTy Type
fun Type
arg -> Type -> Type -> Type
AppTy (Type -> Type
go Type
fun) (Type -> Type
go Type
arg)
Type
ty -> Type
ty
substTyVar
:: TvSubst
-> TyVar
-> Type
substTyVar :: TvSubst -> TyVar -> Type
substTyVar (TvSubst InScopeSet
_ TvSubstEnv
tenv) TyVar
tv = case TyVar -> TvSubstEnv -> Maybe Type
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv TyVar
tv TvSubstEnv
tenv of
Just Type
ty -> Type
ty
Maybe Type
_ -> TyVar -> Type
VarTy TyVar
tv
substTyVarBndr
:: TvSubst
-> TyVar
-> (TvSubst, TyVar)
substTyVarBndr :: TvSubst -> TyVar -> (TvSubst, TyVar)
substTyVarBndr subst :: TvSubst
subst@(TvSubst InScopeSet
inScope TvSubstEnv
tenv) TyVar
oldVar =
ASSERT2( no_capture, clashPretty oldVar <> line
<> clashPretty newVar <> line
<> clashPretty subst )
(InScopeSet -> TvSubstEnv -> TvSubst
TvSubst (InScopeSet
inScope InScopeSet -> TyVar -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
`extendInScopeSet` TyVar
newVar) TvSubstEnv
newEnv, TyVar
newVar)
where
newEnv :: TvSubstEnv
newEnv | Bool
noChange = TvSubstEnv -> TyVar -> TvSubstEnv
forall a b. VarEnv a -> Var b -> VarEnv a
delVarEnv TvSubstEnv
tenv TyVar
oldVar
| Bool
otherwise = TyVar -> Type -> TvSubstEnv -> TvSubstEnv
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv TyVar
oldVar (TyVar -> Type
VarTy TyVar
newVar) TvSubstEnv
tenv
no_capture :: Bool
no_capture = Bool -> Bool
not (TyVar
newVar TyVar -> VarSet -> Bool
forall a. Var a -> VarSet -> Bool
`elemVarSet` TvSubstEnv -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf TvSubstEnv
tenv)
oldKi :: Type
oldKi = TyVar -> Type
forall a. Var a -> Type
varType TyVar
oldVar
noKindChange :: Bool
noKindChange = Type -> Bool
forall a. HasFreeVars a => a -> Bool
isClosed Type
oldKi
noChange :: Bool
noChange = Bool
noKindChange Bool -> Bool -> Bool
&& (TyVar
newVar TyVar -> TyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TyVar
oldVar)
newVar :: TyVar
newVar | Bool
noKindChange = InScopeSet -> TyVar -> TyVar
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope TyVar
oldVar
| Bool
otherwise = InScopeSet -> TyVar -> TyVar
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope
(TyVar
oldVar {varType :: Type
varType = HasCallStack => TvSubst -> Type -> Type
TvSubst -> Type -> Type
substTyUnchecked TvSubst
subst Type
oldKi})
maybeSubstTm
:: HasCallStack
=> Doc ()
-> Maybe Subst
-> Term
-> Term
maybeSubstTm :: Doc () -> Maybe Subst -> Term -> Term
maybeSubstTm Doc ()
_doc Maybe Subst
Nothing = Term -> Term
forall a. a -> a
id
maybeSubstTm Doc ()
doc (Just Subst
s) = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
s
substTm
:: HasCallStack
=> Doc ()
-> Subst
-> Term
-> Term
substTm :: Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst = Term -> Term
go where
go :: Term -> Term
go = \case
Var Id
v -> HasCallStack => Doc () -> Subst -> Id -> Term
Doc () -> Subst -> Id -> Term
lookupIdSubst (Doc ()
doc Doc () -> Doc () -> Doc ()
forall a. Semigroup a => a -> a -> a
<> Doc ()
forall ann. Doc ann
line Doc () -> Doc () -> Doc ()
forall a. Semigroup a => a -> a -> a
<> Doc ()
"subsTm") Subst
subst Id
v
Lam Id
v Term
e -> case HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst Id
v of
(Subst
subst',Id
v') -> Id -> Term -> Term
Lam Id
v' (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst' Term
e)
TyLam TyVar
v Term
e -> case HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst TyVar
v of
(Subst
subst',TyVar
v') -> TyVar -> Term -> Term
TyLam TyVar
v' (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst' Term
e)
App Term
l Term
r -> Term -> Term -> Term
App (Term -> Term
go Term
l) (Term -> Term
go Term
r)
TyApp Term
l Type
r -> Term -> Type -> Term
TyApp (Term -> Term
go Term
l) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
r)
Let Bind Term
bs Term
e -> case HasCallStack => Doc () -> Subst -> Bind Term -> (Subst, Bind Term)
Doc () -> Subst -> Bind Term -> (Subst, Bind Term)
substBind Doc ()
doc Subst
subst Bind Term
bs of
(Subst
subst',Bind Term
bs') -> Bind Term -> Term -> Term
Let Bind Term
bs' (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst' Term
e)
Case Term
subj Type
ty [Alt]
alts -> Term -> Type -> [Alt] -> Term
Case (Term -> Term
go Term
subj) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
ty) ((Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map Alt -> Alt
goAlt [Alt]
alts)
Cast Term
e Type
t1 Type
t2 -> Term -> Type -> Type -> Term
Cast (Term -> Term
go Term
e) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
t1) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
t2)
Tick TickInfo
tick Term
e -> TickInfo -> Term -> Term
Tick (TickInfo -> TickInfo
goTick TickInfo
tick) (Term -> Term
go Term
e)
Term
tm -> Term
tm
goAlt :: Alt -> Alt
goAlt (Pat
pat,Term
alt) = case Pat
pat of
DataPat DataCon
dc [TyVar]
tvs [Id]
ids -> case (Subst -> TyVar -> (Subst, TyVar))
-> Subst -> [TyVar] -> (Subst, [TyVar])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst [TyVar]
tvs of
(Subst
subst1,[TyVar]
tvs') -> case (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst1 [Id]
ids of
(Subst
subst2,[Id]
ids') -> (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
tvs' [Id]
ids',HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst2 Term
alt)
Pat
_ -> (Pat
pat,Term -> Term
go Term
alt)
goTick :: TickInfo -> TickInfo
goTick t :: TickInfo
t@(SrcSpan SrcSpan
_) = TickInfo
t
goTick (NameMod NameMod
m Type
ty) = NameMod -> Type -> TickInfo
NameMod NameMod
m (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
ty)
goTick t :: TickInfo
t@TickInfo
DeDup = TickInfo
t
goTick t :: TickInfo
t@TickInfo
NoDeDup = TickInfo
t
substAlt
:: HasCallStack
=> Doc ()
-> Subst
-> (Pat, Term)
-> (Pat, Term)
substAlt :: Doc () -> Subst -> Alt -> Alt
substAlt Doc ()
doc Subst
subst (Pat
pat,Term
alt) = case Pat
pat of
DataPat DataCon
dc [TyVar]
tvs [Id]
ids -> case (Subst -> TyVar -> (Subst, TyVar))
-> Subst -> [TyVar] -> (Subst, [TyVar])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst [TyVar]
tvs of
(Subst
subst1,[TyVar]
tvs1) -> case (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst1 [Id]
ids of
(Subst
subst2,[Id]
ids1) -> (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
tvs1 [Id]
ids1,HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst2 Term
alt)
Pat
_ -> (Pat
pat, HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst Term
alt)
substId
:: HasCallStack
=> Subst
-> Id
-> Id
substId :: Subst -> Id -> Id
substId Subst
subst Id
oldId = (Subst, Id) -> Id
forall a b. (a, b) -> b
snd ((Subst, Id) -> Id) -> (Subst, Id) -> Id
forall a b. (a -> b) -> a -> b
$ HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst Id
oldId
lookupIdSubst
:: HasCallStack
=> Doc ()
-> Subst
-> Id
-> Term
lookupIdSubst :: Doc () -> Subst -> Id -> Term
lookupIdSubst Doc ()
doc (Subst InScopeSet
inScope IdSubstEnv
tmS TvSubstEnv
_ IdSubstEnv
genv) Id
v
| Id -> Bool
forall a. Var a -> Bool
isGlobalId Id
v = case Id -> IdSubstEnv -> Maybe Term
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
v IdSubstEnv
genv of
Just Term
e -> Term
e
Maybe Term
_ -> Id -> Term
Var Id
v
| Just Term
e <- Id -> IdSubstEnv -> Maybe Term
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
v IdSubstEnv
tmS = Term
e
| Just v' :: Var Any
v'@(Id {}) <- InScopeSet -> Id -> Maybe (Var Any)
forall a. InScopeSet -> Var a -> Maybe (Var Any)
lookupInScope InScopeSet
inScope Id
v = Id -> Term
Var (Var Any -> Id
coerce Var Any
v')
| Bool
otherwise = WARN(True, "Subst.lookupIdSubst" <+> doc <+> fromPpr v)
Id -> Term
Var Id
v
substIdBndr
:: HasCallStack
=> Subst
-> Id
-> (Subst,Id)
substIdBndr :: Subst -> Id -> (Subst, Id)
substIdBndr subst :: Subst
subst@(Subst InScopeSet
inScope IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) Id
oldId =
(InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst (InScopeSet
inScope InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
`extendInScopeSet` Id
newId) IdSubstEnv
newEnv TvSubstEnv
tenv IdSubstEnv
genv, Id
newId)
where
id1 :: Id
id1 = InScopeSet -> Id -> Id
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope Id
oldId
newId :: Id
newId | Bool
noTypeChange = Id
id1
| Bool
otherwise = Id
id1 {varType :: Type
varType = HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst (Id -> Type
forall a. Var a -> Type
varType Id
id1)}
oldTy :: Type
oldTy = Id -> Type
forall a. Var a -> Type
varType Id
oldId
noTypeChange :: Bool
noTypeChange = TvSubstEnv -> Bool
forall a. VarEnv a -> Bool
nullVarEnv TvSubstEnv
tenv Bool -> Bool -> Bool
|| Type -> Bool
forall a. HasFreeVars a => a -> Bool
isClosed Type
oldTy
newEnv :: IdSubstEnv
newEnv | Bool
noChange = IdSubstEnv -> Id -> IdSubstEnv
forall a b. VarEnv a -> Var b -> VarEnv a
delVarEnv IdSubstEnv
env Id
oldId
| Bool
otherwise = Id -> Term -> IdSubstEnv -> IdSubstEnv
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv Id
oldId (Id -> Term
Var Id
newId) IdSubstEnv
env
noChange :: Bool
noChange = Id
id1 Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
oldId
substTyVarBndr'
:: HasCallStack
=> Subst
-> TyVar
-> (Subst,TyVar)
substTyVarBndr' :: Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' (Subst InScopeSet
inScope IdSubstEnv
tmS TvSubstEnv
tyS IdSubstEnv
tgS) TyVar
tv =
case TvSubst -> TyVar -> (TvSubst, TyVar)
substTyVarBndr (InScopeSet -> TvSubstEnv -> TvSubst
TvSubst InScopeSet
inScope TvSubstEnv
tyS) TyVar
tv of
(TvSubst InScopeSet
inScope' TvSubstEnv
tyS',TyVar
tv') -> (InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
inScope' IdSubstEnv
tmS TvSubstEnv
tyS' IdSubstEnv
tgS, TyVar
tv')
substBind
:: HasCallStack
=> Doc ()
-> Subst
-> Bind Term
-> (Subst, Bind Term)
substBind :: Doc () -> Subst -> Bind Term -> (Subst, Bind Term)
substBind Doc ()
doc Subst
subst (NonRec Id
i Term
x) =
(Subst
subst', Id -> Term -> Bind Term
forall a. Id -> a -> Bind a
NonRec Id
i' Term
x')
where
(Subst
subst', Id
i') = HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst Id
i
x' :: Term
x' = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm (Doc ()
"substBind" Doc () -> Doc () -> Doc ()
forall ann. Doc ann -> Doc ann -> Doc ann
<+> Doc ()
doc) Subst
subst Term
x
substBind Doc ()
doc Subst
subst (Rec [(Id, Term)]
xs) =
(Subst
subst', [(Id, Term)] -> Bind Term
forall a. [(Id, a)] -> Bind a
Rec ([Id] -> [Term] -> [(Id, Term)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
bndrs' [Term]
rhss'))
where
([Id]
bndrs,[Term]
rhss) = [(Id, Term)] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, Term)]
xs
(Subst
subst',[Id]
bndrs') = (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst [Id]
bndrs
rhss' :: [Term]
rhss' = (Term -> Term) -> [Term] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm (Doc ()
"substBind" Doc () -> Doc () -> Doc ()
forall ann. Doc ann -> Doc ann -> Doc ann
<+> Doc ()
doc) Subst
subst') [Term]
rhss
substTyWith
:: HasCallStack
=> [TyVar]
-> [Type]
-> Type
-> Type
substTyWith :: [TyVar] -> [Type] -> Type -> Type
substTyWith [TyVar]
tvs [Type]
tys =
ASSERT( List.equalLength tvs tys )
HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy ([TyVar] -> [Type] -> Subst
zipTvSubst [TyVar]
tvs [Type]
tys)
deShadowTerm
:: HasCallStack
=> InScopeSet
-> Term
-> Term
deShadowTerm :: InScopeSet -> Term -> Term
deShadowTerm InScopeSet
is Term
e = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"deShadowTerm" (InScopeSet -> Subst
mkSubst InScopeSet
is) Term
e
deShadowAlt ::
HasCallStack =>
InScopeSet ->
(Pat, Term) ->
(Pat, Term)
deShadowAlt :: InScopeSet -> Alt -> Alt
deShadowAlt InScopeSet
is = HasCallStack => Doc () -> Subst -> Alt -> Alt
Doc () -> Subst -> Alt -> Alt
substAlt Doc ()
"deShadowAlt" (InScopeSet -> Subst
mkSubst InScopeSet
is)
deshadowLetExpr
:: HasCallStack
=> InScopeSet
-> Bind Term
-> Term
-> (Bind Term, Term)
deshadowLetExpr :: InScopeSet -> Bind Term -> Term -> (Bind Term, Term)
deshadowLetExpr InScopeSet
is Bind Term
bs Term
e =
case HasCallStack => Doc () -> Subst -> Bind Term -> (Subst, Bind Term)
Doc () -> Subst -> Bind Term -> (Subst, Bind Term)
substBind Doc ()
"deshadowLetBindings" (InScopeSet -> Subst
mkSubst InScopeSet
is) Bind Term
bs of
(Subst
s1,Bind Term
bs1) -> (Bind Term
bs1, HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"deShadowLetBody" Subst
s1 Term
e)
freshenTm
:: InScopeSet
-> Term
-> (InScopeSet, Term)
freshenTm :: InScopeSet -> Term -> (InScopeSet, Term)
freshenTm InScopeSet
is0 = Subst -> Term -> (InScopeSet, Term)
go (InScopeSet -> Subst
mkSubst InScopeSet
is0) where
go :: Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 = \case
Var Id
v -> (Subst -> InScopeSet
substInScope Subst
subst0, HasCallStack => Doc () -> Subst -> Id -> Term
Doc () -> Subst -> Id -> Term
lookupIdSubst Doc ()
"freshenTm" Subst
subst0 Id
v)
Lam Id
v Term
e -> case HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst0 Id
v of
(Subst
subst1,Id
v') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst1 Term
e of
(InScopeSet
is2,Term
e') -> (InScopeSet
is2, Id -> Term -> Term
Lam Id
v' Term
e')
TyLam TyVar
v Term
e -> case HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst0 TyVar
v of
(Subst
subst1,TyVar
v') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst1 Term
e of
(InScopeSet
is2,Term
e') -> (InScopeSet
is2,TyVar -> Term -> Term
TyLam TyVar
v' Term
e')
App Term
l Term
r -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
l of
(InScopeSet
is1,Term
l') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 {substInScope :: InScopeSet
substInScope = InScopeSet
is1} Term
r of
(InScopeSet
is2,Term
r') -> (InScopeSet
is2, Term -> Term -> Term
App Term
l' Term
r')
TyApp Term
l Type
r -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
l of
(InScopeSet
is1,Term
l') -> (InScopeSet
is1, Term -> Type -> Term
TyApp Term
l' (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
r))
Let Bind Term
bs Term
e -> case Subst -> Bind Term -> (Subst, Bind Term)
goBind Subst
subst0 Bind Term
bs of
(Subst
subst1,Bind Term
bs') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst1 Term
e of
(InScopeSet
is2,Term
e') -> (InScopeSet
is2,Bind Term -> Term -> Term
Let Bind Term
bs' Term
e')
Case Term
subj Type
ty [Alt]
alts -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
subj of
(InScopeSet
is1,Term
subj') -> case (InScopeSet -> Alt -> (InScopeSet, Alt))
-> InScopeSet -> [Alt] -> (InScopeSet, [Alt])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL (\InScopeSet
isN -> Subst -> Alt -> (InScopeSet, Alt)
goAlt Subst
subst0 {substInScope :: InScopeSet
substInScope = InScopeSet
isN}) InScopeSet
is1 [Alt]
alts of
(InScopeSet
is2,[Alt]
alts') -> (InScopeSet
is2, Term -> Type -> [Alt] -> Term
Case Term
subj' (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
ty) [Alt]
alts')
Cast Term
e Type
t1 Type
t2 -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
e of
(InScopeSet
is1, Term
e') -> (InScopeSet
is1, Term -> Type -> Type -> Term
Cast Term
e' (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
t1) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
t2))
Tick TickInfo
tick Term
e -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
e of
(InScopeSet
is1, Term
e') -> (InScopeSet
is1, TickInfo -> Term -> Term
Tick (Subst -> TickInfo -> TickInfo
goTick Subst
subst0 TickInfo
tick) Term
e')
Term
tm -> (Subst -> InScopeSet
substInScope Subst
subst0, Term
tm)
goBind :: Subst -> Bind Term -> (Subst, Bind Term)
goBind Subst
subst0 (NonRec Id
i Term
x) =
let (Subst
subst1, Id
i') = HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst0 Id
i
(InScopeSet
is2, Term
x') = Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
x
in (Subst
subst1 { substInScope :: InScopeSet
substInScope = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is2 Id
i' }, Id -> Term -> Bind Term
forall a. Id -> a -> Bind a
NonRec Id
i' Term
x')
goBind Subst
subst0 (Rec [(Id, Term)]
xs) =
let ([Id]
bndrs,[Term]
rhss) = [(Id, Term)] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, Term)]
xs
(Subst
subst1,[Id]
bndrs') = (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst0 [Id]
bndrs
(InScopeSet
is2,[Term]
rhss') = (InScopeSet -> Term -> (InScopeSet, Term))
-> InScopeSet -> [Term] -> (InScopeSet, [Term])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL (\InScopeSet
isN -> Subst -> Term -> (InScopeSet, Term)
go Subst
subst1 {substInScope :: InScopeSet
substInScope = InScopeSet
isN})
(Subst -> InScopeSet
substInScope Subst
subst1)
[Term]
rhss
in (Subst
subst1 {substInScope :: InScopeSet
substInScope = InScopeSet
is2}, [(Id, Term)] -> Bind Term
forall a. [(Id, a)] -> Bind a
Rec ([(Id, Term)] -> Bind Term) -> [(Id, Term)] -> Bind Term
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [(Id, Term)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
bndrs' [Term]
rhss')
goAlt :: Subst -> Alt -> (InScopeSet, Alt)
goAlt Subst
subst0 (Pat
pat,Term
alt) = case Pat
pat of
DataPat DataCon
dc [TyVar]
tvs [Id]
ids -> case (Subst -> TyVar -> (Subst, TyVar))
-> Subst -> [TyVar] -> (Subst, [TyVar])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst0 [TyVar]
tvs of
(Subst
subst1,[TyVar]
tvs') -> case (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst1 [Id]
ids of
(Subst
subst2,[Id]
ids') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst2 Term
alt of
(InScopeSet
is3,Term
alt') -> (InScopeSet
is3,(DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
tvs' [Id]
ids',Term
alt'))
Pat
_ -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
alt of
(InScopeSet
is1,Term
alt') -> (InScopeSet
is1,(Pat
pat,Term
alt'))
goTick :: Subst -> TickInfo -> TickInfo
goTick Subst
subst0 (NameMod NameMod
m Type
ty) = NameMod -> Type -> TickInfo
NameMod NameMod
m (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
ty)
goTick Subst
_ TickInfo
tick = TickInfo
tick
aeqType
:: Type
-> Type
-> Bool
aeqType :: Type -> Type -> Bool
aeqType Type
t1 Type
t2 = RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
rnEnv Type
t1 Type
t2 Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
EQ
where
rnEnv :: RnEnv
rnEnv = InScopeSet -> RnEnv
mkRnEnv (VarSet -> InScopeSet
mkInScopeSet ([Type] -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf [Type
t1,Type
t2]))
acmpType
:: Type
-> Type
-> Ordering
acmpType :: Type -> Type -> Ordering
acmpType Type
t1 Type
t2 = RnEnv -> Type -> Type -> Ordering
acmpType' (InScopeSet -> RnEnv
mkRnEnv InScopeSet
inScope) Type
t1 Type
t2
where
inScope :: InScopeSet
inScope = VarSet -> InScopeSet
mkInScopeSet ([Type] -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf [Type
t1,Type
t2])
acmpType'
:: RnEnv
-> Type
-> Type
-> Ordering
acmpType' :: RnEnv -> Type -> Type -> Ordering
acmpType' = RnEnv -> Type -> Type -> Ordering
go
where
go :: RnEnv -> Type -> Type -> Ordering
go RnEnv
env (VarTy TyVar
tv1) (VarTy TyVar
tv2) = TyVar -> TyVar -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (RnEnv -> TyVar -> TyVar
rnOccLTy RnEnv
env TyVar
tv1) (RnEnv -> TyVar -> TyVar
rnOccRTy RnEnv
env TyVar
tv2)
go RnEnv
_ (ConstTy ConstTy
c1) (ConstTy ConstTy
c2) = ConstTy -> ConstTy -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ConstTy
c1 ConstTy
c2
go RnEnv
env (ForAllTy TyVar
tv1 Type
t1) (ForAllTy TyVar
tv2 Type
t2) =
RnEnv -> Type -> Type -> Ordering
go RnEnv
env (TyVar -> Type
forall a. Var a -> Type
varType TyVar
tv1) (TyVar -> Type
forall a. Var a -> Type
varType TyVar
tv2) Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Type -> Type -> Ordering
go (RnEnv -> TyVar -> TyVar -> RnEnv
rnTyBndr RnEnv
env TyVar
tv1 TyVar
tv2) Type
t1 Type
t2
go RnEnv
env (AppTy Type
s1 Type
t1) (AppTy Type
s2 Type
t2) =
RnEnv -> Type -> Type -> Ordering
go RnEnv
env Type
s1 Type
s2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Type -> Type -> Ordering
go RnEnv
env Type
t1 Type
t2
go RnEnv
_ (LitTy LitTy
l1) (LitTy LitTy
l2) = LitTy -> LitTy -> Ordering
forall a. Ord a => a -> a -> Ordering
compare LitTy
l1 LitTy
l2
go RnEnv
env (AnnType [Attr Text]
a1 Type
t1) (AnnType [Attr Text]
a2 Type
t2) =
[Attr Text] -> [Attr Text] -> Ordering
forall a. Ord a => a -> a -> Ordering
compare [Attr Text]
a1 [Attr Text]
a2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Type -> Type -> Ordering
go RnEnv
env Type
t1 Type
t2
go RnEnv
_ Type
t1 Type
t2 = Word -> Word -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Type -> Word
getRank Type
t1) (Type -> Word
getRank Type
t2)
getRank :: Type -> Word
getRank :: Type -> Word
getRank (VarTy {}) = Word
0
getRank (LitTy {}) = Word
1
getRank (ConstTy {}) = Word
2
getRank (AnnType {}) = Word
3
getRank (AppTy {}) = Word
4
getRank (ForAllTy {}) = Word
5
eqType
:: Type
-> Type
-> Bool
eqType :: Type -> Type -> Bool
eqType = Type -> Type -> Bool
go
where
go :: Type -> Type -> Bool
go (VarTy TyVar
tv1) (VarTy TyVar
tv2) = TyVar
tv1 TyVar -> TyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TyVar
tv2
go (ConstTy ConstTy
c1) (ConstTy ConstTy
c2) = ConstTy
c1 ConstTy -> ConstTy -> Bool
forall a. Eq a => a -> a -> Bool
== ConstTy
c2
go (ForAllTy TyVar
tv1 Type
t1) (ForAllTy TyVar
tv2 Type
t2) =
TyVar
tv1 TyVar -> TyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TyVar
tv2 Bool -> Bool -> Bool
&& Type -> Type -> Bool
go (TyVar -> Type
forall a. Var a -> Type
varType TyVar
tv1) (TyVar -> Type
forall a. Var a -> Type
varType TyVar
tv2) Bool -> Bool -> Bool
&& Type -> Type -> Bool
go Type
t1 Type
t2
go (AppTy Type
s1 Type
t1) (AppTy Type
s2 Type
t2) = Type -> Type -> Bool
go Type
s1 Type
s2 Bool -> Bool -> Bool
&& Type -> Type -> Bool
go Type
t1 Type
t2
go (LitTy LitTy
l1) (LitTy LitTy
l2) = LitTy
l1 LitTy -> LitTy -> Bool
forall a. Eq a => a -> a -> Bool
== LitTy
l2
go (AnnType [Attr Text]
a1 Type
t1) (AnnType [Attr Text]
a2 Type
t2) = [Attr Text]
a1 [Attr Text] -> [Attr Text] -> Bool
forall a. Eq a => a -> a -> Bool
== [Attr Text]
a2 Bool -> Bool -> Bool
&& Type -> Type -> Bool
go Type
t1 Type
t2
go Type
_ Type
_ = Bool
False
aeqTerm
:: Term
-> Term
-> Bool
aeqTerm :: Term -> Term -> Bool
aeqTerm Term
t1 Term
t2 = InScopeSet -> Term -> Term -> Bool
aeqTerm' InScopeSet
inScope Term
t1 Term
t2
where
inScope :: InScopeSet
inScope = VarSet -> InScopeSet
mkInScopeSet ([Term] -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf [Term
t1,Term
t2])
aeqTerm'
:: InScopeSet
-> Term
-> Term
-> Bool
aeqTerm' :: InScopeSet -> Term -> Term -> Bool
aeqTerm' InScopeSet
inScope Term
t1 Term
t2 = InScopeSet -> Term -> Term -> Ordering
acmpTerm' InScopeSet
inScope Term
t1 Term
t2 Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
EQ
acmpTerm
:: Term
-> Term
-> Ordering
acmpTerm :: Term -> Term -> Ordering
acmpTerm Term
t1 Term
t2 = InScopeSet -> Term -> Term -> Ordering
acmpTerm' InScopeSet
inScope Term
t1 Term
t2
where
inScope :: InScopeSet
inScope = VarSet -> InScopeSet
mkInScopeSet ([Term] -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf [Term
t1,Term
t2])
acmpTerm'
:: InScopeSet
-> Term
-> Term
-> Ordering
acmpTerm' :: InScopeSet -> Term -> Term -> Ordering
acmpTerm' InScopeSet
inScope = RnEnv -> Term -> Term -> Ordering
go (InScopeSet -> RnEnv
mkRnEnv InScopeSet
inScope)
where
thenCmpTm :: Ordering -> Ordering -> Ordering
thenCmpTm Ordering
EQ Ordering
rel = Ordering
rel
thenCmpTm Ordering
rel Ordering
_ = Ordering
rel
go :: RnEnv -> Term -> Term -> Ordering
go RnEnv
env (Var Id
id1) (Var Id
id2) = Id -> Id -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (RnEnv -> Id -> Id
rnOccLId RnEnv
env Id
id1) (RnEnv -> Id -> Id
rnOccRId RnEnv
env Id
id2)
go RnEnv
_ (Data DataCon
dc1) (Data DataCon
dc2) = DataCon -> DataCon -> Ordering
forall a. Ord a => a -> a -> Ordering
compare DataCon
dc1 DataCon
dc2
go RnEnv
_ (Literal Literal
l1) (Literal Literal
l2) = Literal -> Literal -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Literal
l1 Literal
l2
go RnEnv
_ (Prim PrimInfo
p1) (Prim PrimInfo
p2) = (PrimInfo -> Text) -> PrimInfo -> PrimInfo -> Ordering
forall a b. Ord a => (b -> a) -> b -> b -> Ordering
comparing PrimInfo -> Text
primName PrimInfo
p1 PrimInfo
p2
go RnEnv
env (Lam Id
b1 Term
e1) (Lam Id
b2 Term
e2) =
RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env (Id -> Type
forall a. Var a -> Type
varType Id
b1) (Id -> Type
forall a. Var a -> Type
varType Id
b2) Ordering -> Ordering -> Ordering
`thenCompare`
RnEnv -> Term -> Term -> Ordering
go (RnEnv -> Id -> Id -> RnEnv
rnTmBndr RnEnv
env Id
b1 Id
b2) Term
e1 Term
e2
go RnEnv
env (TyLam TyVar
b1 Term
e1) (TyLam TyVar
b2 Term
e2) =
RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env (TyVar -> Type
forall a. Var a -> Type
varType TyVar
b1) (TyVar -> Type
forall a. Var a -> Type
varType TyVar
b2) Ordering -> Ordering -> Ordering
`thenCompare`
RnEnv -> Term -> Term -> Ordering
go (RnEnv -> TyVar -> TyVar -> RnEnv
rnTyBndr RnEnv
env TyVar
b1 TyVar
b2) Term
e1 Term
e2
go RnEnv
env (App Term
l1 Term
r1) (App Term
l2 Term
r2) =
RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
l1 Term
l2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
r1 Term
r2
go RnEnv
env (TyApp Term
l1 Type
r1) (TyApp Term
l2 Type
r2) =
RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
l1 Term
l2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env Type
r1 Type
r2
go RnEnv
env (Let (NonRec Id
i1 Term
x1) Term
e1) (Let (NonRec Id
i2 Term
x2) Term
e2) =
RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
x1 Term
x2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Term -> Term -> Ordering
go (RnEnv -> Id -> Id -> RnEnv
rnTmBndr RnEnv
env Id
i1 Id
i2) Term
e1 Term
e2
go RnEnv
env (Let (Rec [(Id, Term)]
bs1) Term
e1) (Let (Rec [(Id, Term)]
bs2) Term
e2) =
Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ([(Id, Term)] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [(Id, Term)]
bs1) ([(Id, Term)] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [(Id, Term)]
bs2) Ordering -> Ordering -> Ordering
`thenCompare`
(Ordering -> Ordering -> Ordering)
-> Ordering -> [Ordering] -> Ordering
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ordering -> Ordering -> Ordering
thenCmpTm Ordering
EQ ((Term -> Term -> Ordering) -> [Term] -> [Term] -> [Ordering]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (RnEnv -> Term -> Term -> Ordering
go RnEnv
env') [Term]
rhs1 [Term]
rhs2) Ordering -> Ordering -> Ordering
`thenCompare`
RnEnv -> Term -> Term -> Ordering
go RnEnv
env' Term
e1 Term
e2
where
([Id]
ids1,[Term]
rhs1) = [(Id, Term)] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, Term)]
bs1
([Id]
ids2,[Term]
rhs2) = [(Id, Term)] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, Term)]
bs2
env' :: RnEnv
env' = RnEnv -> [Id] -> [Id] -> RnEnv
rnTmBndrs RnEnv
env [Id]
ids1 [Id]
ids2
go RnEnv
env (Case Term
e1 Type
_ [Alt]
a1) (Case Term
e2 Type
_ [Alt]
a2) =
Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ([Alt] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Alt]
a1) ([Alt] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Alt]
a2) Ordering -> Ordering -> Ordering
`thenCompare`
RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2 Ordering -> Ordering -> Ordering
`thenCompare`
(Ordering -> Ordering -> Ordering)
-> Ordering -> [Ordering] -> Ordering
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ordering -> Ordering -> Ordering
thenCmpTm Ordering
EQ ((Alt -> Alt -> Ordering) -> [Alt] -> [Alt] -> [Ordering]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (RnEnv -> Alt -> Alt -> Ordering
goAlt RnEnv
env) [Alt]
a1 [Alt]
a2)
go RnEnv
env (Cast Term
e1 Type
l1 Type
r1) (Cast Term
e2 Type
l2 Type
r2) =
RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2 Ordering -> Ordering -> Ordering
`thenCompare`
RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env Type
l1 Type
l2 Ordering -> Ordering -> Ordering
`thenCompare`
RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env Type
r1 Type
r2
go RnEnv
env (Tick TickInfo
t1 Term
e1) (Tick TickInfo
t2 Term
e2) =
TickInfo -> TickInfo -> Ordering
forall a. Ord a => a -> a -> Ordering
compare TickInfo
t1 TickInfo
t2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2
go RnEnv
_ Term
e1 Term
e2 = Word -> Word -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Term -> Word
getRank Term
e1) (Term -> Word
getRank Term
e2)
goAlt :: RnEnv -> Alt -> Alt -> Ordering
goAlt RnEnv
env (DataPat DataCon
c1 [TyVar]
tvs1 [Id]
ids1,Term
e1) (DataPat DataCon
c2 [TyVar]
tvs2 [Id]
ids2,Term
e2) =
DataCon -> DataCon -> Ordering
forall a. Ord a => a -> a -> Ordering
compare DataCon
c1 DataCon
c2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Term -> Term -> Ordering
go RnEnv
env' Term
e1 Term
e2
where
env' :: RnEnv
env' = RnEnv -> [Id] -> [Id] -> RnEnv
rnTmBndrs (RnEnv -> [TyVar] -> [TyVar] -> RnEnv
rnTyBndrs RnEnv
env [TyVar]
tvs1 [TyVar]
tvs2) [Id]
ids1 [Id]
ids2
goAlt RnEnv
env (Pat
c1,Term
e1) (Pat
c2,Term
e2) =
Pat -> Pat -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Pat
c1 Pat
c2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2
getRank :: Term -> Word
getRank :: Term -> Word
getRank = \case
Var {} -> Word
0
Data {} -> Word
1
Literal {} -> Word
2
Prim {} -> Word
3
Cast {} -> Word
4
App {} -> Word
5
TyApp {} -> Word
6
Lam {} -> Word
7
TyLam {} -> Word
8
Let NonRec{} Term
_ -> Word
9
Let Rec{} Term
_ -> Word
10
Case {} -> Word
11
Tick {} -> Word
12
eqTerm :: Term -> Term -> Bool
eqTerm :: Term -> Term -> Bool
eqTerm = Term -> Term -> Bool
go
where
go :: Term -> Term -> Bool
go (Var Id
id1) (Var Id
id2) = Id
id1 Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
id2
go (Data DataCon
dc1) (Data DataCon
dc2) = DataCon
dc1 DataCon -> DataCon -> Bool
forall a. Eq a => a -> a -> Bool
== DataCon
dc2
go (Literal Literal
l1) (Literal Literal
l2) = Literal
l1 Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l2
go (Prim PrimInfo
p1) (Prim PrimInfo
p2) = PrimInfo -> Text
primName PrimInfo
p1 Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== PrimInfo -> Text
primName PrimInfo
p2
go (Lam Id
b1 Term
e1) (Lam Id
b2 Term
e2) =
Id
b1 Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
b2 Bool -> Bool -> Bool
&& Type -> Type -> Bool
eqType (Id -> Type
forall a. Var a -> Type
varType Id
b1) (Id -> Type
forall a. Var a -> Type
varType Id
b2) Bool -> Bool -> Bool
&& Term -> Term -> Bool
go Term
e1 Term
e2
go (TyLam TyVar
b1 Term
e1) (TyLam TyVar
b2 Term
e2) =
TyVar
b1 TyVar -> TyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TyVar
b2 Bool -> Bool -> Bool
&& Type -> Type -> Bool
eqType (TyVar -> Type
forall a. Var a -> Type
varType TyVar
b1) (TyVar -> Type
forall a. Var a -> Type
varType TyVar
b2) Bool -> Bool -> Bool
&& Term -> Term -> Bool
go Term
e1 Term
e2
go (App Term
l1 Term
r1) (App Term
l2 Term
r2) = Term -> Term -> Bool
go Term
l1 Term
l2 Bool -> Bool -> Bool
&& Term -> Term -> Bool
go Term
r1 Term
r2
go (TyApp Term
l1 Type
r1) (TyApp Term
l2 Type
r2) = Term -> Term -> Bool
go Term
l1 Term
l2 Bool -> Bool -> Bool
&& Type -> Type -> Bool
eqType Type
r1 Type
r2
go (Let Bind Term
bs1 Term
e1) (Let Bind Term
bs2 Term
e2) =
Term -> Term -> Bool
go Term
e1 Term
e2 Bool -> Bool -> Bool
&&
Bind Term -> Bind Term -> Bool
goBind Bind Term
bs1 Bind Term
bs2
where
goBind :: Bind Term -> Bind Term -> Bool
goBind (NonRec Id
b1 Term
r1) (NonRec Id
b2 Term
r2) =
Id
b1 Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
b2 Bool -> Bool -> Bool
&& Term -> Term -> Bool
go Term
r1 Term
r2
goBind (Rec [(Id, Term)]
brs1) (Rec [(Id, Term)]
brs2) =
((Id, Term) -> (Id, Term) -> Bool)
-> [(Id, Term)] -> [(Id, Term)] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
List.all2
(\(Id
b1,Term
r1) (Id
b2,Term
r2) ->
Id
b1 Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
b2 Bool -> Bool -> Bool
&&
Type -> Type -> Bool
eqType (Id -> Type
forall a. Var a -> Type
varType Id
b1) (Id -> Type
forall a. Var a -> Type
varType Id
b2) Bool -> Bool -> Bool
&&
Term -> Term -> Bool
go Term
r1 Term
r2)
[(Id, Term)]
brs1 [(Id, Term)]
brs2
goBind Bind Term
_ Bind Term
_ = Bool
False
go (Case Term
e1 Type
_ [Alt]
a1) (Case Term
e2 Type
_ [Alt]
a2) =
Term -> Term -> Bool
go Term
e1 Term
e2 Bool -> Bool -> Bool
&&
(Alt -> Alt -> Bool) -> [Alt] -> [Alt] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
List.all2 Alt -> Alt -> Bool
forall a. Eq a => (a, Term) -> (a, Term) -> Bool
goAlt [Alt]
a1 [Alt]
a2
where
goAlt :: (a, Term) -> (a, Term) -> Bool
goAlt (a
p1,Term
r1) (a
p2,Term
r2) = a
p1 a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
p2 Bool -> Bool -> Bool
&& Term -> Term -> Bool
go Term
r1 Term
r2
go (Cast Term
e1 Type
l1 Type
r1) (Cast Term
e2 Type
l2 Type
r2) =
Term -> Term -> Bool
go Term
e1 Term
e2 Bool -> Bool -> Bool
&&
Type -> Type -> Bool
eqType Type
l1 Type
l2 Bool -> Bool -> Bool
&&
Type -> Type -> Bool
eqType Type
r1 Type
r2
go (Tick TickInfo
t1 Term
e1) (Tick TickInfo
t2 Term
e2) = TickInfo
t1 TickInfo -> TickInfo -> Bool
forall a. Eq a => a -> a -> Bool
== TickInfo
t2 Bool -> Bool -> Bool
&& Term -> Term -> Bool
go Term
e1 Term
e2
go Term
_ Term
_ = Bool
False
instance Eq Type where
== :: Type -> Type -> Bool
(==) = Type -> Type -> Bool
aeqType
instance Ord Type where
compare :: Type -> Type -> Ordering
compare = Type -> Type -> Ordering
acmpType
instance Eq Term where
== :: Term -> Term -> Bool
(==) = Term -> Term -> Bool
aeqTerm
instance TypeError (
'Text "A broken implementation of Hashable Term has been "
':<>: 'Text "removed in Clash 1.4.7. If this is an issue for you, please submit "
':<>: 'Text "an issue report at https://github.com/clash-lang/clash-compiler/issues."
) => Hashable Term where
hashWithSalt :: Int -> Term -> Int
hashWithSalt = String -> Int -> Term -> Int
forall a. HasCallStack => String -> a
error String
"Term.hashWithSalt: unreachable"
instance Ord Term where
compare :: Term -> Term -> Ordering
compare = Term -> Term -> Ordering
acmpTerm