{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Unsafe #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-# OPTIONS_HADDOCK show-extensions not-home #-}
module Clash.Sized.Internal.Unsigned
(
Unsigned (..)
, size#
, pack#
, unpack#
, eq#
, neq#
, lt#
, ge#
, gt#
, le#
, enumFrom#
, enumFromThen#
, enumFromTo#
, enumFromThenTo#
, minBound#
, maxBound#
, (+#)
, (-#)
, (*#)
, negate#
, fromInteger#
, plus#
, minus#
, times#
, quot#
, rem#
, toInteger#
, and#
, or#
, xor#
, complement#
, shiftL#
, shiftR#
, rotateL#
, rotateR#
, resize#
, unsignedToWord
, unsigned8toWord8
, unsigned16toWord16
, unsigned32toWord32
)
where
import Prelude hiding (even, odd)
import Control.DeepSeq (NFData (..))
import Control.Lens (Index, Ixed (..), IxValue)
import Data.Bits (Bits (..), FiniteBits (..))
import Data.Data (Data)
import Data.Default.Class (Default (..))
import Data.Proxy (Proxy (..))
import Text.Read (Read (..), ReadPrec)
import GHC.Exts (narrow8Word#, narrow16Word#, narrow32Word#)
import GHC.Generics (Generic)
import GHC.Integer.GMP.Internals (bigNatToWord)
import GHC.Natural (Natural (..), naturalFromInteger)
#if MIN_VERSION_base(4,12,0)
import GHC.Natural (naturalToInteger)
#endif
import GHC.TypeLits (KnownNat, Nat, type (+), natVal)
import GHC.TypeLits.Extra (Max)
import GHC.Word (Word (..), Word8 (..), Word16 (..), Word32 (..))
import Language.Haskell.TH (TypeQ, appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift(..))
import Test.QuickCheck.Arbitrary (Arbitrary (..), CoArbitrary (..),
arbitraryBoundedIntegral,
coarbitraryIntegral)
import Clash.Class.BitPack (BitPack (..), packXWith, bitCoerce)
import Clash.Class.Num (ExtendingNum (..), SaturatingNum (..),
SaturationMode (..))
import Clash.Class.Parity (Parity (..))
import Clash.Class.Resize (Resize (..))
import Clash.Prelude.BitIndex ((!), msb, replaceBit, split)
import Clash.Prelude.BitReduction (reduceOr)
import Clash.Promoted.Nat (natToNum)
import Clash.Sized.Internal.BitVector (BitVector (BV), Bit, high, low, undefError)
import qualified Clash.Sized.Internal.BitVector as BV
import Clash.Sized.Internal.Mod
import Clash.XException
(ShowX (..), NFDataX (..), errorX, showsPrecXWith, rwhnfX)
#include "MachDeps.h"
newtype Unsigned (n :: Nat) =
U { unsafeToNatural :: Natural }
deriving (Data, Generic)
{-# NOINLINE size# #-}
size# :: KnownNat n => Unsigned n -> Int
size# u = fromInteger (natVal u)
instance NFData (Unsigned n) where
rnf (U i) = rnf i `seq` ()
{-# NOINLINE rnf #-}
instance Show (Unsigned n) where
show (U i) = show i
{-# NOINLINE show #-}
instance ShowX (Unsigned n) where
showsPrecX = showsPrecXWith showsPrec
instance NFDataX (Unsigned n) where
deepErrorX = errorX
rnfX = rwhnfX
instance KnownNat n => Read (Unsigned n) where
readPrec = fromIntegral <$> (readPrec :: ReadPrec Natural)
instance KnownNat n => BitPack (Unsigned n) where
type BitSize (Unsigned n) = n
pack = packXWith pack#
unpack = unpack#
{-# NOINLINE pack# #-}
pack# :: Unsigned n -> BitVector n
pack# (U i) = BV 0 i
{-# NOINLINE unpack# #-}
unpack# :: KnownNat n => BitVector n -> Unsigned n
unpack# (BV 0 i) = U i
unpack# bv = undefError "Unsigned.unpack" [bv]
instance Eq (Unsigned n) where
(==) = eq#
(/=) = neq#
{-# NOINLINE eq# #-}
eq# :: Unsigned n -> Unsigned n -> Bool
eq# (U v1) (U v2) = v1 == v2
{-# NOINLINE neq# #-}
neq# :: Unsigned n -> Unsigned n -> Bool
neq# (U v1) (U v2) = v1 /= v2
instance Ord (Unsigned n) where
(<) = lt#
(>=) = ge#
(>) = gt#
(<=) = le#
lt#,ge#,gt#,le# :: Unsigned n -> Unsigned n -> Bool
{-# NOINLINE lt# #-}
lt# (U n) (U m) = n < m
{-# NOINLINE ge# #-}
ge# (U n) (U m) = n >= m
{-# NOINLINE gt# #-}
gt# (U n) (U m) = n > m
{-# NOINLINE le# #-}
le# (U n) (U m) = n <= m
instance KnownNat n => Enum (Unsigned n) where
succ = (+# fromInteger# 1)
pred = (-# fromInteger# 1)
toEnum = fromInteger# . toInteger
fromEnum = fromEnum . toInteger#
enumFrom = enumFrom#
enumFromThen = enumFromThen#
enumFromTo = enumFromTo#
enumFromThenTo = enumFromThenTo#
enumFrom# :: forall n. KnownNat n => Unsigned n -> [Unsigned n]
enumFrom# = \x -> map (U . (`mod` m)) [unsafeToNatural x .. unsafeToNatural (maxBound :: Unsigned n)]
where m = 1 `shiftL` fromInteger (natVal (Proxy @n))
{-# NOINLINE enumFrom# #-}
enumFromThen# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThen# = \x y -> toUnsigneds [unsafeToNatural x, unsafeToNatural y .. bound x y]
where
toUnsigneds = map (U . (`mod` m))
bound x y = unsafeToNatural (if x <= y then maxBound else minBound :: Unsigned n)
m = 1 `shiftL` fromInteger (natVal (Proxy @n))
{-# NOINLINE enumFromThen# #-}
enumFromTo# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> [Unsigned n]
enumFromTo# = \x y -> map (U . (`mod` m)) [unsafeToNatural x .. unsafeToNatural y]
where m = 1 `shiftL` fromInteger (natVal (Proxy @n))
{-# NOINLINE enumFromTo# #-}
enumFromThenTo# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThenTo# = \x1 x2 y -> map (U . (`mod` m)) [unsafeToNatural x1, unsafeToNatural x2 .. unsafeToNatural y]
where m = 1 `shiftL` fromInteger (natVal (Proxy @n))
{-# NOINLINE enumFromThenTo# #-}
instance KnownNat n => Bounded (Unsigned n) where
minBound = minBound#
maxBound = maxBound#
minBound# :: Unsigned n
minBound# = U 0
{-# NOINLINE minBound# #-}
maxBound# :: forall n. KnownNat n => Unsigned n
maxBound# = let m = 1 `shiftL` (natToNum @n) in U (m - 1)
{-# NOINLINE maxBound# #-}
instance KnownNat n => Num (Unsigned n) where
(+) = (+#)
(-) = (-#)
(*) = (*#)
negate = negate#
abs = id
signum bv = resize# (unpack# (BV.pack# (reduceOr bv)))
fromInteger = fromInteger#
(+#),(-#),(*#) :: forall n . KnownNat n => Unsigned n -> Unsigned n -> Unsigned n
{-# NOINLINE (+#) #-}
(+#) = \(U i) (U j) -> U (addMod m i j)
where m = 1 `shiftL` fromInteger (natVal (Proxy @n))
{-# NOINLINE (-#) #-}
(-#) = \(U i) (U j) -> U (subMod m i j)
where m = 1 `shiftL` fromInteger (natVal (Proxy @n))
{-# NOINLINE (*#) #-}
(*#) = \(U i) (U j) -> U (mulMod2 m i j)
where m = (1 `shiftL` fromInteger (natVal (Proxy @n))) - 1
{-# NOINLINE negate# #-}
negate# :: forall n . KnownNat n => Unsigned n -> Unsigned n
negate# = \(U i) -> U (negateMod m i)
where m = 1 `shiftL` fromInteger (natVal (Proxy @n))
{-# NOINLINE fromInteger# #-}
fromInteger# :: forall n . KnownNat n => Integer -> Unsigned n
fromInteger# = \x -> U (naturalFromInteger (x `mod` m))
where
m = 1 `shiftL` fromInteger (natVal (Proxy @n))
instance (KnownNat m, KnownNat n) => ExtendingNum (Unsigned m) (Unsigned n) where
type AResult (Unsigned m) (Unsigned n) = Unsigned (Max m n + 1)
add = plus#
sub = minus#
type MResult (Unsigned m) (Unsigned n) = Unsigned (m + n)
mul = times#
{-# NOINLINE plus# #-}
plus# :: Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
plus# (U a) (U b) = U (a + b)
{-# NOINLINE minus# #-}
minus# :: forall m n . (KnownNat m, KnownNat n) => Unsigned m -> Unsigned n
-> Unsigned (Max m n + 1)
minus# = \(U a) (U b) -> U (subMod mask a b)
where
sz = fromInteger (natVal (Proxy @(Max m n + 1)))
mask = 1 `shiftL` sz
{-# NOINLINE times# #-}
times# :: Unsigned m -> Unsigned n -> Unsigned (m + n)
times# (U a) (U b) = U (a * b)
instance KnownNat n => Real (Unsigned n) where
toRational = toRational . toInteger#
instance KnownNat n => Integral (Unsigned n) where
quot = quot#
rem = rem#
div = quot#
mod = rem#
quotRem n d = (n `quot#` d,n `rem#` d)
divMod n d = (n `quot#` d,n `rem#` d)
toInteger = toInteger#
quot#,rem# :: Unsigned n -> Unsigned n -> Unsigned n
{-# NOINLINE quot# #-}
quot# (U i) (U j) = U (i `quot` j)
{-# NOINLINE rem# #-}
rem# (U i) (U j) = U (i `rem` j)
{-# NOINLINE toInteger# #-}
toInteger# :: Unsigned n -> Integer
toInteger# (U i) = naturalToInteger i
instance KnownNat n => Parity (Unsigned n) where
even = even . pack
odd = odd . pack
instance KnownNat n => Bits (Unsigned n) where
(.&.) = and#
(.|.) = or#
xor = xor#
complement = complement#
zeroBits = 0
bit i = replaceBit i high 0
setBit v i = replaceBit i high v
clearBit v i = replaceBit i low v
complementBit v i = replaceBit i (BV.complement## (v ! i)) v
testBit v i = v ! i == high
bitSizeMaybe v = Just (size# v)
bitSize = size#
isSigned _ = False
shiftL v i = shiftL# v i
shiftR v i = shiftR# v i
rotateL v i = rotateL# v i
rotateR v i = rotateR# v i
popCount u = popCount (pack# u)
{-# NOINLINE and# #-}
and# :: Unsigned n -> Unsigned n -> Unsigned n
and# (U v1) (U v2) = U (v1 .&. v2)
{-# NOINLINE or# #-}
or# :: Unsigned n -> Unsigned n -> Unsigned n
or# (U v1) (U v2) = U (v1 .|. v2)
{-# NOINLINE xor# #-}
xor# :: Unsigned n -> Unsigned n -> Unsigned n
xor# (U v1) (U v2) = U (v1 `xor` v2)
{-# NOINLINE complement# #-}
complement# :: forall n . KnownNat n => Unsigned n -> Unsigned n
complement# = \(U i) -> U (complementN i)
where complementN = complementMod (natVal (Proxy @n))
shiftL#, shiftR#, rotateL#, rotateR# :: forall n .KnownNat n => Unsigned n -> Int -> Unsigned n
{-# NOINLINE shiftL# #-}
shiftL# =
\(U v) i ->
if i >= 0 then
U ((shiftL v i) `mod` m)
else
error ("'shiftL undefined for negative number: " ++ show i)
where
m = 1 `shiftL` fromInteger (natVal (Proxy @n))
{-# NOINLINE shiftR# #-}
shiftR# (U v) i
| i < 0 = error
$ "'shiftR undefined for negative number: " ++ show i
| otherwise = U (shiftR v i)
{-# NOINLINE rotateL# #-}
rotateL# =
\(U n) b ->
if b >= 0 then
let l = shiftL n b'
r = shiftR n b''
b' = b `mod` sz
b'' = sz - b'
in U ((l .|. r) `mod` m)
else
error "'rotateL undefined for negative numbers"
where
sz = fromInteger (natVal (Proxy @n)) :: Int
m = 1 `shiftL` sz
{-# NOINLINE rotateR# #-}
rotateR# =
\(U n) b ->
if b >= 0 then
let l = shiftR n b'
r = shiftL n b''
b' = b `mod` sz
b'' = sz - b'
in U ((l .|. r) `mod` m)
else
error "'rotateR undefined for negative numbers"
where
sz = fromInteger (natVal (Proxy @n)) :: Int
m = 1 `shiftL` sz
instance KnownNat n => FiniteBits (Unsigned n) where
finiteBitSize = size#
countLeadingZeros u = countLeadingZeros (pack# u)
countTrailingZeros u = countTrailingZeros (pack# u)
instance Resize Unsigned where
resize = resize#
zeroExtend = extend
truncateB = resize#
{-# NOINLINE resize# #-}
resize# :: forall n m . KnownNat m => Unsigned n -> Unsigned m
resize# = \(U i) -> if i >= m then U (i `mod` m) else U i
where m = 1 `shiftL` fromInteger (natVal (Proxy @m))
instance Default (Unsigned n) where
def = minBound#
instance KnownNat n => Lift (Unsigned n) where
lift u@(U i) = sigE [| fromInteger# i |] (decUnsigned (natVal u))
{-# NOINLINE lift #-}
decUnsigned :: Integer -> TypeQ
decUnsigned n = appT (conT ''Unsigned) (litT $ numTyLit n)
instance KnownNat n => SaturatingNum (Unsigned n) where
satAdd SatWrap a b = a +# b
satAdd SatZero a b =
let r = plus# a b
in case msb r of
0 -> resize# r
_ -> minBound#
satAdd _ a b =
let r = plus# a b
in case msb r of
0 -> resize# r
_ -> maxBound#
satSub SatWrap a b = a -# b
satSub _ a b =
let r = minus# a b
in case msb r of
0 -> resize# r
_ -> minBound#
satMul SatWrap a b = a *# b
satMul SatZero a b =
let r = times# a b
(rL,rR) = split r
in case rL of
0 -> unpack# rR
_ -> minBound#
satMul _ a b =
let r = times# a b
(rL,rR) = split r
in case rL of
0 -> unpack# rR
_ -> maxBound#
instance KnownNat n => Arbitrary (Unsigned n) where
arbitrary = arbitraryBoundedIntegral
shrink = BV.shrinkSizedUnsigned
instance KnownNat n => CoArbitrary (Unsigned n) where
coarbitrary = coarbitraryIntegral
type instance Index (Unsigned n) = Int
type instance IxValue (Unsigned n) = Bit
instance KnownNat n => Ixed (Unsigned n) where
ix i f s = unpack# <$> BV.replaceBit# (pack# s) i
<$> f (BV.index# (pack# s) i)
unsignedToWord :: Unsigned WORD_SIZE_IN_BITS -> Word
unsignedToWord (U (NatS# u#)) = W# u#
unsignedToWord (U (NatJ# u#)) = W# (bigNatToWord u#)
{-# NOINLINE unsignedToWord #-}
unsigned8toWord8 :: Unsigned 8 -> Word8
unsigned8toWord8 (U (NatS# u#)) = W8# (narrow8Word# u#)
unsigned8toWord8 (U (NatJ# u#)) = W8# (narrow8Word# (bigNatToWord u#))
{-# NOINLINE unsigned8toWord8 #-}
unsigned16toWord16 :: Unsigned 16 -> Word16
unsigned16toWord16 (U (NatS# u#)) = W16# (narrow16Word# u#)
unsigned16toWord16 (U (NatJ# u#)) = W16# (narrow16Word# (bigNatToWord u#))
{-# NOINLINE unsigned16toWord16 #-}
unsigned32toWord32 :: Unsigned 32 -> Word32
unsigned32toWord32 (U (NatS# u#)) = W32# (narrow32Word# u#)
unsigned32toWord32 (U (NatJ# u#)) = W32# (narrow32Word# (bigNatToWord u#))
{-# NOINLINE unsigned32toWord32 #-}
{-# RULES
"bitCoerce/Unsigned WORD_SIZE_IN_BITS -> Word" bitCoerce = unsignedToWord
"bitCoerce/Unsigned 8 -> Word8" bitCoerce = unsigned8toWord8
"bitCoerce/Unsigned 16 -> Word16" bitCoerce = unsigned16toWord16
"bitCoerce/Unsigned 32 -> Word32" bitCoerce = unsigned32toWord32
#-}