clash-prelude-1.4.5: Clash: a functional hardware description language - Prelude library
Copyright(C) 2013-2016 University of Twente
2016-2017 Myrtle Software Ltd
2017 Google Inc.
LicenseBSD2 (see the file LICENSE)
MaintainerChristiaan Baaij <christiaan.baaij@gmail.com>
Safe HaskellTrustworthy
LanguageHaskell2010
Extensions
  • MonoLocalBinds
  • ScopedTypeVariables
  • BangPatterns
  • ViewPatterns
  • GADTs
  • GADTSyntax
  • DataKinds
  • InstanceSigs
  • StandaloneDeriving
  • DeriveDataTypeable
  • DeriveFunctor
  • DeriveTraversable
  • DeriveFoldable
  • DeriveGeneric
  • DefaultSignatures
  • DeriveLift
  • DerivingStrategies
  • MagicHash
  • KindSignatures
  • TupleSections
  • TypeOperators
  • ExplicitNamespaces
  • ExplicitForAll
  • BinaryLiterals
  • TypeApplications

Clash.Explicit.BlockRam

Description

BlockRAM primitives

Using RAMs

We will show a rather elaborate example on how you can, and why you might want to use blockRams. We will build a "small" CPU+Memory+Program ROM where we will slowly evolve to using blockRams. Note that the code is not meant as a de-facto standard on how to do CPU design in Clash.

We start with the definition of the Instructions, Register names and machine codes:

{-# LANGUAGE RecordWildCards, TupleSections, DeriveAnyClass #-}

module CPU where

import Clash.Explicit.Prelude

type InstrAddr = Unsigned 8
type MemAddr   = Unsigned 5
type Value     = Signed 8

data Instruction
  = Compute Operator Reg Reg Reg
  | Branch Reg Value
  | Jump Value
  | Load MemAddr Reg
  | Store Reg MemAddr
  | Nop
  deriving (Eq,Show)

data Reg
  = Zero
  | PC
  | RegA
  | RegB
  | RegC
  | RegD
  | RegE
  deriving (Eq,Show,Enum)

data Operator = Add | Sub | Incr | Imm | CmpGt
  deriving (Eq,Show)

data MachCode
  = MachCode
  { inputX  :: Reg
  , inputY  :: Reg
  , result  :: Reg
  , aluCode :: Operator
  , ldReg   :: Reg
  , rdAddr  :: MemAddr
  , wrAddrM :: Maybe MemAddr
  , jmpM    :: Maybe Value
  }

nullCode = MachCode { inputX = Zero, inputY = Zero, result = Zero, aluCode = Imm
                    , ldReg = Zero, rdAddr = 0, wrAddrM = Nothing
                    , jmpM = Nothing
                    }

Next we define the CPU and its ALU:

cpu
  :: Vec 7 Value
  -- ^ Register bank
  -> (Value,Instruction)
  -- ^ (Memory output, Current instruction)
  -> ( Vec 7 Value
     , (MemAddr, Maybe (MemAddr,Value), InstrAddr)
     )
cpu regbank (memOut,instr) = (regbank',(rdAddr,(,aluOut) <$> wrAddrM,fromIntegral ipntr))
  where
    -- Current instruction pointer
    ipntr = regbank !! PC

    -- Decoder
    (MachCode {..}) = case instr of
      Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op}
      Branch cr a          -> nullCode {inputX=cr,jmpM=Just a}
      Jump a               -> nullCode {aluCode=Incr,jmpM=Just a}
      Load a r             -> nullCode {ldReg=r,rdAddr=a}
      Store r a            -> nullCode {inputX=r,wrAddrM=Just a}
      Nop                  -> nullCode

    -- ALU
    regX   = regbank !! inputX
    regY   = regbank !! inputY
    aluOut = alu aluCode regX regY

    -- next instruction
    nextPC = case jmpM of
               Just a | aluOut /= 0 -> ipntr + a
               _                    -> ipntr + 1

    -- update registers
    regbank' = replace Zero   0
             $ replace PC     nextPC
             $ replace result aluOut
             $ replace ldReg  memOut
             $ regbank

alu Add   x y = x + y
alu Sub   x y = x - y
alu Incr  x _ = x + 1
alu Imm   x _ = x
alu CmpGt x y = if x > y then 1 else 0

We initially create a memory out of simple registers:

dataMem
  :: KnownDomain dom
  => Clock dom
  -> Reset dom
  -> Enable dom
  -> Signal dom MemAddr
  -- ^ Read address
  -> Signal dom (Maybe (MemAddr,Value))
  -- ^ (write address, data in)
  -> Signal dom Value
  -- ^ data out
dataMem clk rst en rd wrM = mealy clk rst en dataMemT (replicate d32 0) (bundle (rd,wrM))
  where
    dataMemT mem (rd,wrM) = (mem',dout)
      where
        dout = mem !! rd
        mem' = case wrM of
                 Just (wr,din) -> replace wr din mem
                 _ -> mem

And then connect everything:

system
  :: ( KnownDomain dom
     , KnownNat n )
  => Vec n Instruction
  -> Clock dom
  -> Reset dom
  -> Enable dom
  -> Signal dom Value
system instrs clk rst en = memOut
  where
    memOut = dataMem clk rst en rdAddr dout
    (rdAddr,dout,ipntr) = mealyB clk rst en cpu (replicate d7 0) (memOut,instr)
    instr  = asyncRom instrs <$> ipntr

Create a simple program that calculates the GCD of 4 and 6:

-- Compute GCD of 4 and 6
prog = -- 0 := 4
       Compute Incr Zero RegA RegA :>
       replicate d3 (Compute Incr RegA Zero RegA) ++
       Store RegA 0 :>
       -- 1 := 6
       Compute Incr Zero RegA RegA :>
       replicate d5 (Compute Incr RegA Zero RegA) ++
       Store RegA 1 :>
       -- A := 4
       Load 0 RegA :>
       -- B := 6
       Load 1 RegB :>
       -- start
       Compute CmpGt RegA RegB RegC :>
       Branch RegC 4 :>
       Compute CmpGt RegB RegA RegC :>
       Branch RegC 4 :>
       Jump 5 :>
       -- (a > b)
       Compute Sub RegA RegB RegA :>
       Jump (-6) :>
       -- (b > a)
       Compute Sub RegB RegA RegB :>
       Jump (-8) :>
       -- end
       Store RegA 2 :>
       Load 2 RegC :>
       Nil

And test our system:

>>> sampleN 32 $ system prog systemClockGen resetGen enableGen
[0,0,0,0,0,0,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]

to see that our system indeed calculates that the GCD of 6 and 4 is 2.

Improvement 1: using asyncRam

As you can see, it's fairly straightforward to build a memory using registers and read (!!) and write (replace) logic. This might however not result in the most efficient hardware structure, especially when building an ASIC.

Instead it is preferable to use the asyncRam function which has the potential to be translated to a more efficient structure:

system2
  :: ( KnownDomain dom
     , KnownNat n )
  => Vec n Instruction
  -> Clock dom
  -> Reset dom
  -> Enable dom
  -> Signal dom Value
system2 instrs clk rst en = memOut
  where
    memOut = asyncRam clk clk en d32 rdAddr dout
    (rdAddr,dout,ipntr) = mealyB clk rst en cpu (replicate d7 0) (memOut,instr)
    instr  = asyncRom instrs <$> ipntr

Again, we can simulate our system and see that it works. This time however, we need to disregard the first few output samples, because the initial content of an asyncRam is undefined, and consequently, the first few output samples are also undefined. We use the utility function printX to conveniently filter out the undefinedness and replace it with the string X in the few leading outputs.

>>> printX $ sampleN 32 $ system2 prog systemClockGen resetGen enableGen
[X,X,X,X,X,X,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]

Improvement 2: using blockRam

Finally we get to using blockRam. On FPGAs, asyncRam will be implemented in terms of LUTs, and therefore take up logic resources. FPGAs also have large(r) memory structures called Block RAMs, which are preferred, especially as the memories we need for our application get bigger. The blockRam function will be translated to such a Block RAM.

One important aspect of Block RAMs have a synchronous read port, meaning that, unlike the behavior of asyncRam, given a read address r at time t, the value v in the RAM at address r is only available at time t+1.

For us that means we need to change the design of our CPU. Right now, upon a load instruction we generate a read address for the memory, and the value at that read address is immediately available to be put in the register bank. Because we will be using a BlockRAM, the value is delayed until the next cycle. We hence need to also delay the register address to which the memory address is loaded:

cpu2
  :: (Vec 7 Value,Reg)
  -- ^ (Register bank, Load reg addr)
  -> (Value,Instruction)
  -- ^ (Memory output, Current instruction)
  -> ( (Vec 7 Value,Reg)
     , (MemAddr, Maybe (MemAddr,Value), InstrAddr)
     )
cpu2 (regbank,ldRegD) (memOut,instr) = ((regbank',ldRegD'),(rdAddr,(,aluOut) <$> wrAddrM,fromIntegral ipntr))
  where
    -- Current instruction pointer
    ipntr = regbank !! PC

    -- Decoder
    (MachCode {..}) = case instr of
      Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op}
      Branch cr a          -> nullCode {inputX=cr,jmpM=Just a}
      Jump a               -> nullCode {aluCode=Incr,jmpM=Just a}
      Load a r             -> nullCode {ldReg=r,rdAddr=a}
      Store r a            -> nullCode {inputX=r,wrAddrM=Just a}
      Nop                  -> nullCode

    -- ALU
    regX   = regbank !! inputX
    regY   = regbank !! inputY
    aluOut = alu aluCode regX regY

    -- next instruction
    nextPC = case jmpM of
               Just a | aluOut /= 0 -> ipntr + a
               _                    -> ipntr + 1

    -- update registers
    ldRegD'  = ldReg -- Delay the ldReg by 1 cycle
    regbank' = replace Zero   0
             $ replace PC     nextPC
             $ replace result aluOut
             $ replace ldRegD memOut
             $ regbank

We can now finally instantiate our system with a blockRam:

system3
  :: ( KnownDomain dom
     , KnownNat n )
  => Vec n Instruction
  -> Clock dom
  -> Reset dom
  -> Enable dom
  -> Signal dom Value
system3 instrs clk rst en = memOut
  where
    memOut = blockRam clk en (replicate d32 0) rdAddr dout
    (rdAddr,dout,ipntr) = mealyB clk rst en cpu2 ((replicate d7 0),Zero) (memOut,instr)
    instr  = asyncRom instrs <$> ipntr

We are, however, not done. We will also need to update our program. The reason being that values that we try to load in our registers won't be loaded into the register until the next cycle. This is a problem when the next instruction immediately depended on this memory value. In our case, this was only the case when the loaded the value 6, which was stored at address 1, into RegB. Our updated program is thus:

prog2 = -- 0 := 4
       Compute Incr Zero RegA RegA :>
       replicate d3 (Compute Incr RegA Zero RegA) ++
       Store RegA 0 :>
       -- 1 := 6
       Compute Incr Zero RegA RegA :>
       replicate d5 (Compute Incr RegA Zero RegA) ++
       Store RegA 1 :>
       -- A := 4
       Load 0 RegA :>
       -- B := 6
       Load 1 RegB :>
       Nop :> -- Extra NOP
       -- start
       Compute CmpGt RegA RegB RegC :>
       Branch RegC 4 :>
       Compute CmpGt RegB RegA RegC :>
       Branch RegC 4 :>
       Jump 5 :>
       -- (a > b)
       Compute Sub RegA RegB RegA :>
       Jump (-6) :>
       -- (b > a)
       Compute Sub RegB RegA RegB :>
       Jump (-8) :>
       -- end
       Store RegA 2 :>
       Load 2 RegC :>
       Nil

When we simulate our system we see that it works. This time again, we need to disregard the first sample, because the initial output of a blockRam is undefined. We use the utility function printX to conveniently filter out the undefinedness and replace it with the string X.

>>> printX $ sampleN 34 $ system3 prog2 systemClockGen resetGen enableGen
[X,0,0,0,0,0,0,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]

This concludes the short introduction to using blockRam.

Synopsis

BlockRAM synchronized to the system clock

blockRam Source #

Arguments

:: (KnownDomain dom, HasCallStack, NFDataX a, Enum addr) 
=> Clock dom

Clock to synchronize to

-> Enable dom

Global enable

-> Vec n a

Initial content of the BRAM, also determines the size, n, of the BRAM.

NB: MUST be a constant.

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(write address w, value to write)

-> Signal dom a

Value of the blockRAM at address r from the previous clock cycle

Create a blockRAM with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined
bram40
  :: Clock  dom
  -> Enable  dom
  -> Signal dom (Unsigned 6)
  -> Signal dom (Maybe (Unsigned 6, Bit))
  -> Signal dom Bit
bram40 clk en = blockRam clk en (replicate d40 1)

Additional helpful information:

blockRamPow2 Source #

Arguments

:: (KnownDomain dom, HasCallStack, NFDataX a, KnownNat n) 
=> Clock dom

Clock to synchronize to

-> Enable dom

Global enable

-> Vec (2 ^ n) a

Initial content of the BRAM, also determines the size, 2^n, of the BRAM.

NB: MUST be a constant.

-> Signal dom (Unsigned n)

Read address r

-> Signal dom (Maybe (Unsigned n, a))

(Write address w, value to write)

-> Signal dom a

Value of the blockRAM at address r from the previous clock cycle

Create a blockRAM with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined
bram32
  :: Clock dom
  -> Enable dom
  -> Signal dom (Unsigned 5)
  -> Signal dom (Maybe (Unsigned 5, Bit))
  -> Signal dom Bit
bram32 clk en = blockRamPow2 clk en (replicate d32 1)

Additional helpful information:

blockRamU Source #

Arguments

:: forall n dom a r addr. (KnownDomain dom, HasCallStack, NFDataX a, Enum addr, 1 <= n) 
=> Clock dom

Clock to synchronize to

-> Reset dom

Reset line to listen to. Needs to be held at least n cycles in order for the BRAM to be reset to its initial state.

-> Enable dom

Global enable

-> ResetStrategy r

Whether to clear BRAM on asserted reset (ClearOnReset) or not (NoClearOnReset). Reset needs to be asserted at least n cycles to clear the BRAM.

-> SNat n

Number of elements in BRAM

-> (Index n -> a)

If applicable (see first argument), reset BRAM using this function.

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(write address w, value to write)

-> Signal dom a

Value of the blockRAM at address r from the previous clock cycle

Version of blockram that has no default values set. May be cleared to a arbitrary state using a reset function.

blockRam1 Source #

Arguments

:: forall n dom a r addr. (KnownDomain dom, HasCallStack, NFDataX a, Enum addr, 1 <= n) 
=> Clock dom

Clock to synchronize to

-> Reset dom

Reset line to listen to. Needs to be held at least n cycles in order for the BRAM to be reset to its initial state.

-> Enable dom

Global enable

-> ResetStrategy r

Whether to clear BRAM on asserted reset (ClearOnReset) or not (NoClearOnReset). Reset needs to be asserted at least n cycles to clear the BRAM.

-> SNat n

Number of elements in BRAM

-> a

Initial content of the BRAM (replicated n times)

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(write address w, value to write)

-> Signal dom a

Value of the blockRAM at address r from the previous clock cycle

Version of blockram that is initialized with the same value on all memory positions.

Read/Write conflict resolution

readNew Source #

Arguments

:: (KnownDomain dom, NFDataX a, Eq addr) 
=> Clock dom 
-> Reset dom 
-> Enable dom 
-> (Signal dom addr -> Signal dom (Maybe (addr, a)) -> Signal dom a)

The ram component

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(Write address w, value to write)

-> Signal dom a

Value of the ram at address r from the previous clock cycle

Create read-after-write blockRAM from a read-before-write one

Internal

blockRam# Source #

Arguments

:: (KnownDomain dom, HasCallStack, NFDataX a) 
=> Clock dom

Clock to synchronize to

-> Enable dom

Global enable

-> Vec n a

Initial content of the BRAM, also determines the size, n, of the BRAM.

NB: MUST be a constant.

-> Signal dom Int

Read address r

-> Signal dom Bool

Write enable

-> Signal dom Int

Write address w

-> Signal dom a

Value to write (at address w)

-> Signal dom a

Value of the blockRAM at address r from the previous clock cycle

blockRAM primitive