{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE Trustworthy #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_HADDOCK show-extensions #-}
module Clash.Promoted.Nat
(
SNat (..)
, snatProxy
, withSNat
, snatToInteger, snatToNatural, snatToNum
, natToInteger, natToNatural, natToNum
, addSNat, mulSNat, powSNat, minSNat, maxSNat, succSNat
, subSNat, divSNat, modSNat, flogBaseSNat, clogBaseSNat, logBaseSNat, predSNat
, pow2SNat
, SNatLE (..), compareSNat
, UNat (..)
, toUNat
, fromUNat
, addUNat, mulUNat, powUNat
, predUNat, subUNat
, BNat (..)
, toBNat
, fromBNat
, showBNat
, succBNat, addBNat, mulBNat, powBNat
, predBNat, div2BNat, div2Sub1BNat, log2BNat
, stripZeros
, leToPlus
, leToPlusKN
)
where
import Data.Kind (Type)
import GHC.Show (appPrec)
import GHC.TypeLits (KnownNat, Nat, type (+), type (-), type (*),
type (^), type (<=), natVal)
import GHC.TypeLits.Extra (CLog, FLog, Div, Log, Mod, Min, Max)
import GHC.Natural (naturalFromInteger)
import Language.Haskell.TH (appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift (..))
#if MIN_VERSION_template_haskell(2,16,0)
import Language.Haskell.TH.Compat
#endif
import Numeric.Natural (Natural)
import Unsafe.Coerce (unsafeCoerce)
import Clash.Annotations.Primitive (hasBlackBox)
import Clash.XException (ShowX (..), showsPrecXWith)
data SNat (n :: Nat) where
SNat :: KnownNat n => SNat n
instance Lift (SNat n) where
lift :: SNat n -> Q Exp
lift SNat n
s = Q Exp -> TypeQ -> Q Exp
sigE [| SNat |]
(TypeQ -> TypeQ -> TypeQ
appT (Name -> TypeQ
conT ''SNat) (TyLitQ -> TypeQ
litT (TyLitQ -> TypeQ) -> TyLitQ -> TypeQ
forall a b. (a -> b) -> a -> b
$ Integer -> TyLitQ
numTyLit (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
s)))
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: SNat n -> Q (TExp (SNat n))
liftTyped = SNat n -> Q (TExp (SNat n))
forall a. Lift a => a -> Q (TExp a)
liftTypedFromUntyped
#endif
snatProxy :: KnownNat n => proxy n -> SNat n
snatProxy :: proxy n -> SNat n
snatProxy proxy n
_ = SNat n
forall (n :: Nat). KnownNat n => SNat n
SNat
instance Show (SNat n) where
showsPrec :: Int -> SNat n -> ShowS
showsPrec Int
d p :: SNat n
p@SNat n
SNat | Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
1024 = Char -> ShowS
showChar Char
'd' ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> ShowS
forall a. Show a => a -> ShowS
shows Integer
n
| Bool
otherwise = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
appPrec) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
String -> ShowS
showString String
"SNat @" ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> ShowS
forall a. Show a => a -> ShowS
shows Integer
n
where
n :: Integer
n = SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
p
instance ShowX (SNat n) where
showsPrecX :: Int -> SNat n -> ShowS
showsPrecX = (Int -> SNat n -> ShowS) -> Int -> SNat n -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> SNat n -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
{-# INLINE withSNat #-}
withSNat :: KnownNat n => (SNat n -> a) -> a
withSNat :: (SNat n -> a) -> a
withSNat SNat n -> a
f = SNat n -> a
f SNat n
forall (n :: Nat). KnownNat n => SNat n
SNat
natToInteger :: forall n . KnownNat n => Integer
natToInteger :: Integer
natToInteger = SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger (KnownNat n => SNat n
forall (n :: Nat). KnownNat n => SNat n
SNat @n)
{-# INLINE natToInteger #-}
snatToInteger :: SNat n -> Integer
snatToInteger :: SNat n -> Integer
snatToInteger p :: SNat n
p@SNat n
SNat = SNat n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal SNat n
p
{-# INLINE snatToInteger #-}
natToNatural :: forall n . KnownNat n => Natural
natToNatural :: Natural
natToNatural = SNat n -> Natural
forall (n :: Nat). SNat n -> Natural
snatToNatural (KnownNat n => SNat n
forall (n :: Nat). KnownNat n => SNat n
SNat @n)
{-# INLINE natToNatural #-}
snatToNatural :: SNat n -> Natural
snatToNatural :: SNat n -> Natural
snatToNatural = Integer -> Natural
naturalFromInteger (Integer -> Natural) -> (SNat n -> Integer) -> SNat n -> Natural
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger
{-# INLINE snatToNatural #-}
natToNum :: forall n a . (Num a, KnownNat n) => a
natToNum :: a
natToNum = SNat n -> a
forall a (n :: Nat). Num a => SNat n -> a
snatToNum (KnownNat n => SNat n
forall (n :: Nat). KnownNat n => SNat n
SNat @n)
{-# INLINE natToNum #-}
snatToNum :: forall a n . Num a => SNat n -> a
snatToNum :: SNat n -> a
snatToNum p :: SNat n
p@SNat n
SNat = Integer -> a
forall a. Num a => Integer -> a
fromInteger (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
p)
{-# INLINE snatToNum #-}
data UNat :: Nat -> Type where
UZero :: UNat 0
USucc :: UNat n -> UNat (n + 1)
instance KnownNat n => Show (UNat n) where
show :: UNat n -> String
show UNat n
x = Char
'u'Char -> ShowS
forall a. a -> [a] -> [a]
:Integer -> String
forall a. Show a => a -> String
show (UNat n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal UNat n
x)
instance KnownNat n => ShowX (UNat n) where
showsPrecX :: Int -> UNat n -> ShowS
showsPrecX = (Int -> UNat n -> ShowS) -> Int -> UNat n -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> UNat n -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
toUNat :: forall n . SNat n -> UNat n
toUNat :: SNat n -> UNat n
toUNat p :: SNat n
p@SNat n
SNat = Integer -> UNat n
forall (m :: Nat). Integer -> UNat m
fromI @n (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
p)
where
fromI :: forall m . Integer -> UNat m
fromI :: Integer -> UNat m
fromI Integer
0 = UNat 0 -> UNat m
forall a b. a -> b
unsafeCoerce @(UNat 0) @(UNat m) UNat 0
UZero
fromI Integer
n = UNat ((m - 1) + 1) -> UNat m
forall a b. a -> b
unsafeCoerce @(UNat ((m-1)+1)) @(UNat m) (UNat (m - 1) -> UNat ((m - 1) + 1)
forall (n :: Nat). UNat n -> UNat (n + 1)
USucc (Integer -> UNat (m - 1)
forall (m :: Nat). Integer -> UNat m
fromI @(m-1) (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)))
fromUNat :: UNat n -> SNat n
fromUNat :: UNat n -> SNat n
fromUNat UNat n
UZero = SNat 0
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 0
fromUNat (USucc UNat n
x) = SNat n -> SNat 1 -> SNat (n + 1)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> SNat (a + b)
addSNat (UNat n -> SNat n
forall (n :: Nat). UNat n -> SNat n
fromUNat UNat n
x) (SNat 1
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 1)
addUNat :: UNat n -> UNat m -> UNat (n + m)
addUNat :: UNat n -> UNat m -> UNat (n + m)
addUNat UNat n
UZero UNat m
y = UNat m
UNat (n + m)
y
addUNat UNat n
x UNat m
UZero = UNat n
UNat (n + m)
x
addUNat (USucc UNat n
x) UNat m
y = UNat (n + m) -> UNat ((n + m) + 1)
forall (n :: Nat). UNat n -> UNat (n + 1)
USucc (UNat n -> UNat m -> UNat (n + m)
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n + m)
addUNat UNat n
x UNat m
y)
mulUNat :: UNat n -> UNat m -> UNat (n * m)
mulUNat :: UNat n -> UNat m -> UNat (n * m)
mulUNat UNat n
UZero UNat m
_ = UNat 0
UNat (n * m)
UZero
mulUNat UNat n
_ UNat m
UZero = UNat 0
UNat (n * m)
UZero
mulUNat (USucc UNat n
x) UNat m
y = UNat m -> UNat (n * m) -> UNat (m + (n * m))
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n + m)
addUNat UNat m
y (UNat n -> UNat m -> UNat (n * m)
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n * m)
mulUNat UNat n
x UNat m
y)
powUNat :: UNat n -> UNat m -> UNat (n ^ m)
powUNat :: UNat n -> UNat m -> UNat (n ^ m)
powUNat UNat n
_ UNat m
UZero = UNat 0 -> UNat (0 + 1)
forall (n :: Nat). UNat n -> UNat (n + 1)
USucc UNat 0
UZero
powUNat UNat n
x (USucc UNat n
y) = UNat n -> UNat (n ^ n) -> UNat (n * (n ^ n))
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n * m)
mulUNat UNat n
x (UNat n -> UNat n -> UNat (n ^ n)
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n ^ m)
powUNat UNat n
x UNat n
y)
predUNat :: UNat (n+1) -> UNat n
predUNat :: UNat (n + 1) -> UNat n
predUNat (USucc UNat n
x) = UNat n
UNat n
x
#if __GLASGOW_HASKELL__ != 902
predUNat UNat (n + 1)
UZero =
String -> UNat n
forall a. HasCallStack => String -> a
error String
"predUNat: impossible: 0 minus 1, -1 is not a natural number"
#endif
subUNat :: UNat (m+n) -> UNat n -> UNat m
subUNat :: UNat (m + n) -> UNat n -> UNat m
subUNat UNat (m + n)
x UNat n
UZero = UNat m
UNat (m + n)
x
subUNat (USucc UNat n
x) (USucc UNat n
y) = UNat (m + n) -> UNat n -> UNat m
forall (m :: Nat) (n :: Nat). UNat (m + n) -> UNat n -> UNat m
subUNat UNat n
UNat (m + n)
x UNat n
y
subUNat UNat (m + n)
UZero UNat n
_ = String -> UNat m
forall a. HasCallStack => String -> a
error String
"subUNat: impossible: 0 + (n + 1) ~ 0"
predSNat :: SNat (a+1) -> SNat (a)
predSNat :: SNat (a + 1) -> SNat a
predSNat SNat (a + 1)
SNat = SNat a
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE predSNat #-}
succSNat :: SNat a -> SNat (a+1)
succSNat :: SNat a -> SNat (a + 1)
succSNat SNat a
SNat = SNat (a + 1)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE succSNat #-}
addSNat :: SNat a -> SNat b -> SNat (a+b)
addSNat :: SNat a -> SNat b -> SNat (a + b)
addSNat SNat a
SNat SNat b
SNat = SNat (a + b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE addSNat #-}
infixl 6 `addSNat`
subSNat :: SNat (a+b) -> SNat b -> SNat a
subSNat :: SNat (a + b) -> SNat b -> SNat a
subSNat SNat (a + b)
SNat SNat b
SNat = SNat a
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE subSNat #-}
infixl 6 `subSNat`
mulSNat :: SNat a -> SNat b -> SNat (a*b)
mulSNat :: SNat a -> SNat b -> SNat (a * b)
mulSNat SNat a
SNat SNat b
SNat = SNat (a * b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE mulSNat #-}
infixl 7 `mulSNat`
powSNat :: SNat a -> SNat b -> SNat (a^b)
powSNat :: SNat a -> SNat b -> SNat (a ^ b)
powSNat SNat a
SNat SNat b
SNat = SNat (a ^ b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# CLASH_OPAQUE powSNat #-}
{-# ANN powSNat hasBlackBox #-}
infixr 8 `powSNat`
divSNat :: (1 <= b) => SNat a -> SNat b -> SNat (Div a b)
divSNat :: SNat a -> SNat b -> SNat (Div a b)
divSNat SNat a
SNat SNat b
SNat = SNat (Div a b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE divSNat #-}
infixl 7 `divSNat`
modSNat :: (1 <= b) => SNat a -> SNat b -> SNat (Mod a b)
modSNat :: SNat a -> SNat b -> SNat (Mod a b)
modSNat SNat a
SNat SNat b
SNat = SNat (Mod a b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE modSNat #-}
infixl 7 `modSNat`
minSNat :: SNat a -> SNat b -> SNat (Min a b)
minSNat :: SNat a -> SNat b -> SNat (Min a b)
minSNat SNat a
SNat SNat b
SNat = SNat (Min a b)
forall (n :: Nat). KnownNat n => SNat n
SNat
maxSNat :: SNat a -> SNat b -> SNat (Max a b)
maxSNat :: SNat a -> SNat b -> SNat (Max a b)
maxSNat SNat a
SNat SNat b
SNat = SNat (Max a b)
forall (n :: Nat). KnownNat n => SNat n
SNat
flogBaseSNat :: (2 <= base, 1 <= x)
=> SNat base
-> SNat x
-> SNat (FLog base x)
flogBaseSNat :: SNat base -> SNat x -> SNat (FLog base x)
flogBaseSNat SNat base
SNat SNat x
SNat = SNat (FLog base x)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# CLASH_OPAQUE flogBaseSNat #-}
{-# ANN flogBaseSNat hasBlackBox #-}
clogBaseSNat :: (2 <= base, 1 <= x)
=> SNat base
-> SNat x
-> SNat (CLog base x)
clogBaseSNat :: SNat base -> SNat x -> SNat (CLog base x)
clogBaseSNat SNat base
SNat SNat x
SNat = SNat (CLog base x)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# CLASH_OPAQUE clogBaseSNat #-}
{-# ANN clogBaseSNat hasBlackBox #-}
logBaseSNat :: (FLog base x ~ CLog base x)
=> SNat base
-> SNat x
-> SNat (Log base x)
logBaseSNat :: SNat base -> SNat x -> SNat (Log base x)
logBaseSNat SNat base
SNat SNat x
SNat = SNat (Log base x)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# CLASH_OPAQUE logBaseSNat #-}
{-# ANN logBaseSNat hasBlackBox #-}
pow2SNat :: SNat a -> SNat (2^a)
pow2SNat :: SNat a -> SNat (2 ^ a)
pow2SNat SNat a
SNat = SNat (2 ^ a)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE pow2SNat #-}
data SNatLE a b where
SNatLE :: forall a b . a <= b => SNatLE a b
SNatGT :: forall a b . (b+1) <= a => SNatLE a b
deriving instance Show (SNatLE a b)
compareSNat :: forall a b . SNat a -> SNat b -> SNatLE a b
compareSNat :: SNat a -> SNat b -> SNatLE a b
compareSNat SNat a
a SNat b
b =
if SNat a -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat a
a Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= SNat b -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat b
b
then SNatLE 0 0 -> SNatLE a b
forall a b. a -> b
unsafeCoerce ((0 <= 0) => SNatLE 0 0
forall (a :: Nat) (b :: Nat). (a <= b) => SNatLE a b
SNatLE @0 @0)
else SNatLE 1 0 -> SNatLE a b
forall a b. a -> b
unsafeCoerce (((0 + 1) <= 1) => SNatLE 1 0
forall (a :: Nat) (b :: Nat). ((b + 1) <= a) => SNatLE a b
SNatGT @1 @0)
data BNat :: Nat -> Type where
BT :: BNat 0
B0 :: BNat n -> BNat (2*n)
B1 :: BNat n -> BNat ((2*n) + 1)
instance KnownNat n => Show (BNat n) where
show :: BNat n -> String
show BNat n
x = Char
'b'Char -> ShowS
forall a. a -> [a] -> [a]
:Integer -> String
forall a. Show a => a -> String
show (BNat n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal BNat n
x)
instance KnownNat n => ShowX (BNat n) where
showsPrecX :: Int -> BNat n -> ShowS
showsPrecX = (Int -> BNat n -> ShowS) -> Int -> BNat n -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> BNat n -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
showBNat :: BNat n -> String
showBNat :: BNat n -> String
showBNat = String -> BNat n -> String
forall (m :: Nat). String -> BNat m -> String
go []
where
go :: String -> BNat m -> String
go :: String -> BNat m -> String
go String
xs BNat m
BT = String
"0b" String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
xs
go String
xs (B0 BNat n
x) = String -> BNat n -> String
forall (m :: Nat). String -> BNat m -> String
go (Char
'0'Char -> ShowS
forall a. a -> [a] -> [a]
:String
xs) BNat n
x
go String
xs (B1 BNat n
x) = String -> BNat n -> String
forall (m :: Nat). String -> BNat m -> String
go (Char
'1'Char -> ShowS
forall a. a -> [a] -> [a]
:String
xs) BNat n
x
toBNat :: SNat n -> BNat n
toBNat :: SNat n -> BNat n
toBNat s :: SNat n
s@SNat n
SNat = Integer -> BNat n
forall (m :: Nat). Integer -> BNat m
toBNat' (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
s)
where
toBNat' :: forall m . Integer -> BNat m
toBNat' :: Integer -> BNat m
toBNat' Integer
0 = BNat 0 -> BNat m
forall a b. a -> b
unsafeCoerce BNat 0
BT
toBNat' Integer
n = case Integer
n Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`divMod` Integer
2 of
(Integer
n',Integer
1) -> BNat ((2 * Div (m - 1) 2) + 1) -> BNat m
forall a b. a -> b
unsafeCoerce (BNat (Div (m - 1) 2) -> BNat ((2 * Div (m - 1) 2) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (Integer -> BNat (Div (m - 1) 2)
forall (m :: Nat). Integer -> BNat m
toBNat' @(Div (m-1) 2) Integer
n'))
(Integer
n',Integer
_) -> BNat (2 * Div m 2) -> BNat m
forall a b. a -> b
unsafeCoerce (BNat (Div m 2) -> BNat (2 * Div m 2)
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (Integer -> BNat (Div m 2)
forall (m :: Nat). Integer -> BNat m
toBNat' @(Div m 2) Integer
n'))
fromBNat :: BNat n -> SNat n
fromBNat :: BNat n -> SNat n
fromBNat BNat n
BT = SNat 0
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 0
fromBNat (B0 BNat n
x) = SNat 2 -> SNat n -> SNat (2 * n)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> SNat (a * b)
mulSNat (SNat 2
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 2) (BNat n -> SNat n
forall (n :: Nat). BNat n -> SNat n
fromBNat BNat n
x)
fromBNat (B1 BNat n
x) = SNat (2 * n) -> SNat 1 -> SNat ((2 * n) + 1)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> SNat (a + b)
addSNat (SNat 2 -> SNat n -> SNat (2 * n)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> SNat (a * b)
mulSNat (SNat 2
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 2) (BNat n -> SNat n
forall (n :: Nat). BNat n -> SNat n
fromBNat BNat n
x))
(SNat 1
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 1)
addBNat :: BNat n -> BNat m -> BNat (n+m)
addBNat :: BNat n -> BNat m -> BNat (n + m)
addBNat (B0 BNat n
a) (B0 BNat n
b) = BNat (n + n) -> BNat (2 * (n + n))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat n -> BNat n -> BNat (n + n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat BNat n
a BNat n
b)
addBNat (B0 BNat n
a) (B1 BNat n
b) = BNat (n + n) -> BNat ((2 * (n + n)) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (BNat n -> BNat n -> BNat (n + n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat BNat n
a BNat n
b)
addBNat (B1 BNat n
a) (B0 BNat n
b) = BNat (n + n) -> BNat ((2 * (n + n)) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (BNat n -> BNat n -> BNat (n + n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat BNat n
a BNat n
b)
addBNat (B1 BNat n
a) (B1 BNat n
b) = BNat ((n + n) + 1) -> BNat (2 * ((n + n) + 1))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat (n + n) -> BNat ((n + n) + 1)
forall (n :: Nat). BNat n -> BNat (n + 1)
succBNat (BNat n -> BNat n -> BNat (n + n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat BNat n
a BNat n
b))
addBNat BNat n
BT BNat m
b = BNat m
BNat (n + m)
b
addBNat BNat n
a BNat m
BT = BNat n
BNat (n + m)
a
mulBNat :: BNat n -> BNat m -> BNat (n*m)
mulBNat :: BNat n -> BNat m -> BNat (n * m)
mulBNat BNat n
BT BNat m
_ = BNat 0
BNat (n * m)
BT
mulBNat BNat n
_ BNat m
BT = BNat 0
BNat (n * m)
BT
mulBNat (B0 BNat n
a) BNat m
b = BNat (n * m) -> BNat (2 * (n * m))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat n -> BNat m -> BNat (n * m)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat n
a BNat m
b)
mulBNat (B1 BNat n
a) BNat m
b = BNat (2 * (n * m)) -> BNat m -> BNat ((2 * (n * m)) + m)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat (BNat (n * m) -> BNat (2 * (n * m))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat n -> BNat m -> BNat (n * m)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat n
a BNat m
b)) BNat m
b
powBNat :: BNat n -> BNat m -> BNat (n^m)
powBNat :: BNat n -> BNat m -> BNat (n ^ m)
powBNat BNat n
_ BNat m
BT = BNat 0 -> BNat ((2 * 0) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 BNat 0
BT
powBNat BNat n
a (B0 BNat n
b) = let z :: BNat (n ^ n)
z = BNat n -> BNat n -> BNat (n ^ n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n ^ m)
powBNat BNat n
a BNat n
b
in BNat (n ^ n) -> BNat (n ^ n) -> BNat ((n ^ n) * (n ^ n))
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat (n ^ n)
z BNat (n ^ n)
z
powBNat BNat n
a (B1 BNat n
b) = let z :: BNat (n ^ n)
z = BNat n -> BNat n -> BNat (n ^ n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n ^ m)
powBNat BNat n
a BNat n
b
in BNat n
-> BNat ((n ^ n) * (n ^ n)) -> BNat (n * ((n ^ n) * (n ^ n)))
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat n
a (BNat (n ^ n) -> BNat (n ^ n) -> BNat ((n ^ n) * (n ^ n))
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat (n ^ n)
z BNat (n ^ n)
z)
succBNat :: BNat n -> BNat (n+1)
succBNat :: BNat n -> BNat (n + 1)
succBNat BNat n
BT = BNat 0 -> BNat ((2 * 0) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 BNat 0
BT
succBNat (B0 BNat n
a) = BNat n -> BNat ((2 * n) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 BNat n
a
succBNat (B1 BNat n
a) = BNat (n + 1) -> BNat (2 * (n + 1))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat n -> BNat (n + 1)
forall (n :: Nat). BNat n -> BNat (n + 1)
succBNat BNat n
a)
predBNat :: (1 <= n) => BNat n -> BNat (n-1)
predBNat :: BNat n -> BNat (n - 1)
predBNat (B1 BNat n
a) = case BNat n -> BNat n
forall (n :: Nat). BNat n -> BNat n
stripZeros BNat n
a of
BNat n
BT -> BNat 0
BNat (n - 1)
BT
BNat n
a' -> BNat n -> BNat (2 * n)
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 BNat n
a'
predBNat (B0 BNat n
x) = BNat (n - 1) -> BNat ((2 * (n - 1)) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (BNat n -> BNat (n - 1)
forall (n :: Nat). (1 <= n) => BNat n -> BNat (n - 1)
predBNat BNat n
x)
div2BNat :: BNat (2*n) -> BNat n
div2BNat :: BNat (2 * n) -> BNat n
div2BNat BNat (2 * n)
BT = BNat n
BNat 0
BT
div2BNat (B0 BNat n
x) = BNat n
BNat n
x
div2BNat (B1 BNat n
_) = String -> BNat n
forall a. HasCallStack => String -> a
error String
"div2BNat: impossible: 2*n ~ 2*n+1"
div2Sub1BNat :: BNat (2*n+1) -> BNat n
div2Sub1BNat :: BNat ((2 * n) + 1) -> BNat n
div2Sub1BNat (B1 BNat n
x) = BNat n
BNat n
x
div2Sub1BNat BNat ((2 * n) + 1)
_ = String -> BNat n
forall a. HasCallStack => String -> a
error String
"div2Sub1BNat: impossible: 2*n+1 ~ 2*n"
log2BNat :: BNat (2^n) -> BNat n
#if __GLASGOW_HASKELL__ != 902
log2BNat :: BNat (2 ^ n) -> BNat n
log2BNat BNat (2 ^ n)
BT = String -> BNat n
forall a. HasCallStack => String -> a
error String
"log2BNat: log2(0) not defined"
#endif
log2BNat (B1 BNat n
x) = case BNat n -> BNat n
forall (n :: Nat). BNat n -> BNat n
stripZeros BNat n
x of
BNat n
BT -> BNat n
BNat 0
BT
BNat n
_ -> String -> BNat n
forall a. HasCallStack => String -> a
error String
"log2BNat: impossible: 2^n ~ 2x+1"
log2BNat (B0 BNat n
x) = BNat (n - 1) -> BNat ((n - 1) + 1)
forall (n :: Nat). BNat n -> BNat (n + 1)
succBNat (BNat (2 ^ (n - 1)) -> BNat (n - 1)
forall (n :: Nat). BNat (2 ^ n) -> BNat n
log2BNat BNat n
BNat (2 ^ (n - 1))
x)
stripZeros :: BNat n -> BNat n
stripZeros :: BNat n -> BNat n
stripZeros BNat n
BT = BNat n
BNat 0
BT
stripZeros (B1 BNat n
x) = BNat n -> BNat ((2 * n) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (BNat n -> BNat n
forall (n :: Nat). BNat n -> BNat n
stripZeros BNat n
x)
stripZeros (B0 BNat n
BT) = BNat n
BNat 0
BT
stripZeros (B0 BNat n
x) = case BNat n -> BNat n
forall (n :: Nat). BNat n -> BNat n
stripZeros BNat n
x of
BNat n
BT -> BNat n
BNat 0
BT
BNat n
k -> BNat n -> BNat (2 * n)
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 BNat n
k
leToPlus
:: forall (k :: Nat) (n :: Nat) r
. ( k <= n
)
=> (forall m . (n ~ (k + m)) => r)
-> r
leToPlus :: (forall (m :: Nat). (n ~ (k + m)) => r) -> r
leToPlus forall (m :: Nat). (n ~ (k + m)) => r
r = (n ~ (k + (n - k))) => r
forall (m :: Nat). (n ~ (k + m)) => r
r @(n - k)
{-# INLINE leToPlus #-}
leToPlusKN
:: forall (k :: Nat) (n :: Nat) r
. ( k <= n
, KnownNat k
, KnownNat n
)
=> (forall m . (n ~ (k + m), KnownNat m) => r)
-> r
leToPlusKN :: (forall (m :: Nat). (n ~ (k + m), KnownNat m) => r) -> r
leToPlusKN forall (m :: Nat). (n ~ (k + m), KnownNat m) => r
r = (n ~ (k + (n - k)), KnownNat (n - k)) => r
forall (m :: Nat). (n ~ (k + m), KnownNat m) => r
r @(n - k)
{-# INLINE leToPlusKN #-}