{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Trustworthy #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Clash.Sized.RTree
(
RTree (LR, BR, RLeaf, RBranch)
, treplicate
, trepeat
, thead
, tlast
, indexTree
, tindices
, replaceTree
, tmap
, tzipWith
, tzip
, tunzip
, tfold
, tdfold
, scanlPar
, tscanl
, scanrPar
, tscanr
, v2t
, t2v
, lazyT
)
where
#if !MIN_VERSION_base(4,18,0)
import Control.Applicative (liftA2)
#endif
import Control.DeepSeq (NFData(..))
import qualified Control.Lens as Lens
import Data.Default.Class (Default (..))
import Data.Either (isLeft)
import Data.Foldable (toList)
import Data.Kind (Type)
import Data.Singletons (Apply, TyFun, type (@@))
import Data.Proxy (Proxy (..))
import GHC.TypeLits (KnownNat, Nat, type (+), type (^), type (*))
import Language.Haskell.TH.Syntax (Lift(..))
#if MIN_VERSION_template_haskell(2,16,0)
import Language.Haskell.TH.Compat
#endif
import Prelude hiding ((++), (!!), map)
import Test.QuickCheck (Arbitrary (..), CoArbitrary (..))
import Clash.Annotations.Primitive (hasBlackBox)
import Clash.Class.BitPack (BitPack (..), packXWith)
import Clash.Promoted.Nat (SNat (..), UNat (..),
pow2SNat, snatToNum, subSNat, toUNat)
import Clash.Promoted.Nat.Literals (d1)
import Clash.Sized.Index (Index)
import Clash.Sized.Vector (Vec (..), (!!), (++), dtfold, replace)
import Clash.XException
(ShowX (..), NFDataX (..), isX, showsX, showsPrecXWith)
data RTree :: Nat -> Type -> Type where
RLeaf :: a -> RTree 0 a
RBranch :: RTree d a -> RTree d a -> RTree (d+1) a
instance NFData a => NFData (RTree d a) where
rnf :: RTree d a -> ()
rnf (RLeaf a
x) = a -> ()
forall a. NFData a => a -> ()
rnf a
x
rnf (RBranch RTree d a
l RTree d a
r ) = RTree d a -> ()
forall a. NFData a => a -> ()
rnf RTree d a
l () -> () -> ()
`seq` RTree d a -> ()
forall a. NFData a => a -> ()
rnf RTree d a
r
textract :: RTree 0 a -> a
(RLeaf a
x) = a
x
#if __GLASGOW_HASKELL__ != 902
textract (RBranch RTree d a
_ RTree d a
_) = [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char] -> a) -> [Char] -> a
forall a b. (a -> b) -> a -> b
$ [Char]
"textract: nodes hold no values"
#endif
{-# CLASH_OPAQUE textract #-}
{-# ANN textract hasBlackBox #-}
tsplit :: RTree (d+1) a -> (RTree d a,RTree d a)
tsplit :: RTree (d + 1) a -> (RTree d a, RTree d a)
tsplit (RBranch RTree d a
l RTree d a
r) = (RTree d a
RTree d a
l,RTree d a
RTree d a
r)
#if __GLASGOW_HASKELL__ != 902
tsplit (RLeaf a
_) = [Char] -> (RTree d a, RTree d a)
forall a. HasCallStack => [Char] -> a
error ([Char] -> (RTree d a, RTree d a))
-> [Char] -> (RTree d a, RTree d a)
forall a b. (a -> b) -> a -> b
$ [Char]
"tsplit: leaf is atomic"
#endif
{-# CLASH_OPAQUE tsplit #-}
{-# ANN tsplit hasBlackBox #-}
pattern LR :: a -> RTree 0 a
pattern $bLR :: a -> RTree 0 a
$mLR :: forall r a. RTree 0 a -> (a -> r) -> (Void# -> r) -> r
LR x <- (textract -> x)
where
LR a
x = a -> RTree 0 a
forall a. a -> RTree 0 a
RLeaf a
x
pattern BR :: RTree d a -> RTree d a -> RTree (d+1) a
pattern $bBR :: RTree d a -> RTree d a -> RTree (d + 1) a
$mBR :: forall r (d :: Nat) a.
RTree (d + 1) a
-> (RTree d a -> RTree d a -> r) -> (Void# -> r) -> r
BR l r <- ((\t -> (tsplit t)) -> (l,r))
where
BR RTree d a
l RTree d a
r = RTree d a -> RTree d a -> RTree (d + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
RBranch RTree d a
l RTree d a
r
instance (KnownNat d, Eq a) => Eq (RTree d a) where
== :: RTree d a -> RTree d a -> Bool
(==) RTree d a
t1 RTree d a
t2 = Vec (2 ^ d) a -> Vec (2 ^ d) a -> Bool
forall a. Eq a => a -> a -> Bool
(==) (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t1) (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t2)
instance (KnownNat d, Ord a) => Ord (RTree d a) where
compare :: RTree d a -> RTree d a -> Ordering
compare RTree d a
t1 RTree d a
t2 = Vec (2 ^ d) a -> Vec (2 ^ d) a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t1) (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t2)
instance Show a => Show (RTree n a) where
showsPrec :: Int -> RTree n a -> ShowS
showsPrec Int
_ (RLeaf a
a) = a -> ShowS
forall a. Show a => a -> ShowS
shows a
a
showsPrec Int
_ (RBranch RTree d a
l RTree d a
r) = \[Char]
s -> Char
'<'Char -> ShowS
forall a. a -> [a] -> [a]
:RTree d a -> ShowS
forall a. Show a => a -> ShowS
shows RTree d a
l (Char
','Char -> ShowS
forall a. a -> [a] -> [a]
:RTree d a -> ShowS
forall a. Show a => a -> ShowS
shows RTree d a
r (Char
'>'Char -> ShowS
forall a. a -> [a] -> [a]
:[Char]
s))
instance ShowX a => ShowX (RTree n a) where
showsPrecX :: Int -> RTree n a -> ShowS
showsPrecX = (Int -> RTree n a -> ShowS) -> Int -> RTree n a -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> RTree n a -> ShowS
forall (d :: Nat). Int -> RTree d a -> ShowS
go
where
go :: Int -> RTree d a -> ShowS
go :: Int -> RTree d a -> ShowS
go Int
_ (RLeaf a
a) = a -> ShowS
forall a. ShowX a => a -> ShowS
showsX a
a
go Int
_ (RBranch RTree d a
l RTree d a
r) = \[Char]
s -> Char
'<'Char -> ShowS
forall a. a -> [a] -> [a]
:RTree d a -> ShowS
forall a. ShowX a => a -> ShowS
showsX RTree d a
l (Char
','Char -> ShowS
forall a. a -> [a] -> [a]
:RTree d a -> ShowS
forall a. ShowX a => a -> ShowS
showsX RTree d a
r (Char
'>'Char -> ShowS
forall a. a -> [a] -> [a]
:[Char]
s))
instance KnownNat d => Functor (RTree d) where
fmap :: (a -> b) -> RTree d a -> RTree d b
fmap = (a -> b) -> RTree d a -> RTree d b
forall (d :: Nat) a b.
KnownNat d =>
(a -> b) -> RTree d a -> RTree d b
tmap
instance KnownNat d => Applicative (RTree d) where
pure :: a -> RTree d a
pure = a -> RTree d a
forall (d :: Nat) a. KnownNat d => a -> RTree d a
trepeat
<*> :: RTree d (a -> b) -> RTree d a -> RTree d b
(<*>) = ((a -> b) -> a -> b) -> RTree d (a -> b) -> RTree d a -> RTree d b
forall a b c (d :: Nat).
KnownNat d =>
(a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith (a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
($)
instance KnownNat d => Foldable (RTree d) where
foldMap :: (a -> m) -> RTree d a -> m
foldMap a -> m
f = (a -> m) -> (m -> m -> m) -> RTree d a -> m
forall (d :: Nat) a b.
KnownNat d =>
(a -> b) -> (b -> b -> b) -> RTree d a -> b
tfold a -> m
f m -> m -> m
forall a. Monoid a => a -> a -> a
mappend
data TraversableTree (g :: Type -> Type) (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (TraversableTree f a) d = f (RTree d a)
instance KnownNat d => Traversable (RTree d) where
traverse :: forall f a b . Applicative f => (a -> f b) -> RTree d a -> f (RTree d b)
traverse :: (a -> f b) -> RTree d a -> f (RTree d b)
traverse a -> f b
f = Proxy (TraversableTree f b)
-> (a -> TraversableTree f b @@ 0)
-> (forall (l :: Nat).
SNat l
-> (TraversableTree f b @@ l)
-> (TraversableTree f b @@ l)
-> TraversableTree f b @@ (l + 1))
-> RTree d a
-> TraversableTree f b @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (TraversableTree f b)
forall k (t :: k). Proxy t
Proxy @(TraversableTree f b))
((b -> RTree 0 b) -> f b -> f (RTree 0 b)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> RTree 0 b
forall a. a -> RTree 0 a
LR (f b -> f (RTree 0 b)) -> (a -> f b) -> a -> f (RTree 0 b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> f b
f)
((f (RTree l b) -> f (RTree l b) -> f (RTree (l + 1) b))
-> SNat l -> f (RTree l b) -> f (RTree l b) -> f (RTree (l + 1) b)
forall a b. a -> b -> a
const ((RTree l b -> RTree l b -> RTree (l + 1) b)
-> f (RTree l b) -> f (RTree l b) -> f (RTree (l + 1) b)
forall (f :: Type -> Type) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 RTree l b -> RTree l b -> RTree (l + 1) b
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR))
instance (KnownNat d, BitPack a) =>
BitPack (RTree d a) where
type BitSize (RTree d a) = (2^d) * (BitSize a)
pack :: RTree d a -> BitVector (BitSize (RTree d a))
pack = (RTree d a -> BitVector ((2 ^ d) * BitSize a))
-> RTree d a -> BitVector ((2 ^ d) * BitSize a)
forall (n :: Nat) a.
KnownNat n =>
(a -> BitVector n) -> a -> BitVector n
packXWith (Vec (2 ^ d) a -> BitVector ((2 ^ d) * BitSize a)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (Vec (2 ^ d) a -> BitVector ((2 ^ d) * BitSize a))
-> (RTree d a -> Vec (2 ^ d) a)
-> RTree d a
-> BitVector ((2 ^ d) * BitSize a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v)
unpack :: BitVector (BitSize (RTree d a)) -> RTree d a
unpack = Vec (2 ^ d) a -> RTree d a
forall (d :: Nat) a. KnownNat d => Vec (2 ^ d) a -> RTree d a
v2t (Vec (2 ^ d) a -> RTree d a)
-> (BitVector ((2 ^ d) * BitSize a) -> Vec (2 ^ d) a)
-> BitVector ((2 ^ d) * BitSize a)
-> RTree d a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BitVector ((2 ^ d) * BitSize a) -> Vec (2 ^ d) a
forall a. BitPack a => BitVector (BitSize a) -> a
unpack
type instance Lens.Index (RTree d a) = Int
type instance Lens.IxValue (RTree d a) = a
instance KnownNat d => Lens.Ixed (RTree d a) where
ix :: Index (RTree d a) -> Traversal' (RTree d a) (IxValue (RTree d a))
ix Index (RTree d a)
i IxValue (RTree d a) -> f (IxValue (RTree d a))
f RTree d a
t = Int -> a -> RTree d a -> RTree d a
forall (d :: Nat) i a.
(KnownNat d, Enum i) =>
i -> a -> RTree d a -> RTree d a
replaceTree Int
Index (RTree d a)
i (a -> RTree d a -> RTree d a) -> f a -> f (RTree d a -> RTree d a)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> IxValue (RTree d a) -> f (IxValue (RTree d a))
f (RTree d a -> Int -> a
forall (d :: Nat) i a. (KnownNat d, Enum i) => RTree d a -> i -> a
indexTree RTree d a
t Int
Index (RTree d a)
i) f (RTree d a -> RTree d a) -> f (RTree d a) -> f (RTree d a)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> RTree d a -> f (RTree d a)
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure RTree d a
t
instance (KnownNat d, Default a) => Default (RTree d a) where
def :: RTree d a
def = a -> RTree d a
forall (d :: Nat) a. KnownNat d => a -> RTree d a
trepeat a
forall a. Default a => a
def
instance Lift a => Lift (RTree d a) where
lift :: RTree d a -> Q Exp
lift (RLeaf a
a) = [| RLeaf a |]
lift (RBranch RTree d a
t1 RTree d a
t2) = [| RBranch $(lift t1) $(lift t2) |]
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: RTree d a -> Q (TExp (RTree d a))
liftTyped = RTree d a -> Q (TExp (RTree d a))
forall a. Lift a => a -> Q (TExp a)
liftTypedFromUntyped
#endif
instance (KnownNat d, Arbitrary a) => Arbitrary (RTree d a) where
arbitrary :: Gen (RTree d a)
arbitrary = RTree d (Gen a) -> Gen (RTree d a)
forall (t :: Type -> Type) (f :: Type -> Type) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA (Gen a -> RTree d (Gen a)
forall (d :: Nat) a. KnownNat d => a -> RTree d a
trepeat Gen a
forall a. Arbitrary a => Gen a
arbitrary)
shrink :: RTree d a -> [RTree d a]
shrink = RTree d [a] -> [RTree d a]
forall (t :: Type -> Type) (f :: Type -> Type) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA (RTree d [a] -> [RTree d a])
-> (RTree d a -> RTree d [a]) -> RTree d a -> [RTree d a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> [a]) -> RTree d a -> RTree d [a]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> [a]
forall a. Arbitrary a => a -> [a]
shrink
instance (KnownNat d, CoArbitrary a) => CoArbitrary (RTree d a) where
coarbitrary :: RTree d a -> Gen b -> Gen b
coarbitrary = [a] -> Gen b -> Gen b
forall a b. CoArbitrary a => a -> Gen b -> Gen b
coarbitrary ([a] -> Gen b -> Gen b)
-> (RTree d a -> [a]) -> RTree d a -> Gen b -> Gen b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RTree d a -> [a]
forall (t :: Type -> Type) a. Foldable t => t a -> [a]
toList
instance (KnownNat d, NFDataX a) => NFDataX (RTree d a) where
deepErrorX :: [Char] -> RTree d a
deepErrorX [Char]
x = a -> RTree d a
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ([Char] -> a
forall a. (NFDataX a, HasCallStack) => [Char] -> a
deepErrorX [Char]
x)
rnfX :: RTree d a -> ()
rnfX RTree d a
t = if Either [Char] (RTree d a) -> Bool
forall a b. Either a b -> Bool
isLeft (RTree d a -> Either [Char] (RTree d a)
forall a. a -> Either [Char] a
isX RTree d a
t) then () else RTree d a -> ()
go RTree d a
t
where
go :: RTree d a -> ()
go :: RTree d a -> ()
go (RLeaf a
x) = a -> ()
forall a. NFDataX a => a -> ()
rnfX a
x
go (RBranch RTree d a
l RTree d a
r) = RTree d a -> ()
forall a. NFDataX a => a -> ()
rnfX RTree d a
l () -> () -> ()
`seq` RTree d a -> ()
forall a. NFDataX a => a -> ()
rnfX RTree d a
r
hasUndefined :: RTree d a -> Bool
hasUndefined RTree d a
t = if Either [Char] (RTree d a) -> Bool
forall a b. Either a b -> Bool
isLeft (RTree d a -> Either [Char] (RTree d a)
forall a. a -> Either [Char] a
isX RTree d a
t) then Bool
True else RTree d a -> Bool
go RTree d a
t
where
go :: RTree d a -> Bool
go :: RTree d a -> Bool
go (RLeaf a
x) = a -> Bool
forall a. NFDataX a => a -> Bool
hasUndefined a
x
go (RBranch RTree d a
l RTree d a
r) = RTree d a -> Bool
forall a. NFDataX a => a -> Bool
hasUndefined RTree d a
l Bool -> Bool -> Bool
|| RTree d a -> Bool
forall a. NFDataX a => a -> Bool
hasUndefined RTree d a
r
ensureSpine :: RTree d a -> RTree d a
ensureSpine = (a -> a) -> RTree d a -> RTree d a
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. NFDataX a => a -> a
ensureSpine (RTree d a -> RTree d a)
-> (RTree d a -> RTree d a) -> RTree d a -> RTree d a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RTree d a -> RTree d a
forall (d :: Nat) a. KnownNat d => RTree d a -> RTree d a
lazyT
tdfold :: forall p k a . KnownNat k
=> Proxy (p :: TyFun Nat Type -> Type)
-> (a -> (p @@ 0))
-> (forall l . SNat l -> (p @@ l) -> (p @@ l) -> (p @@ (l+1)))
-> RTree k a
-> (p @@ k)
tdfold :: Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold Proxy p
_ a -> p @@ 0
f forall (l :: Nat). SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1)
g = SNat k -> RTree k a -> p @@ k
forall (m :: Nat). SNat m -> RTree m a -> p @@ m
go SNat k
forall (n :: Nat). KnownNat n => SNat n
SNat
where
go :: SNat m -> RTree m a -> (p @@ m)
go :: SNat m -> RTree m a -> p @@ m
go SNat m
_ (RLeaf a
a) = a -> p @@ 0
f a
a
go SNat m
sn (RBranch RTree d a
l RTree d a
r) = let sn' :: SNat d
sn' = SNat m
SNat (d + 1)
sn SNat (d + 1) -> SNat 1 -> SNat d
forall (a :: Nat) (b :: Nat). SNat (a + b) -> SNat b -> SNat a
`subSNat` SNat 1
d1
in SNat d -> (p @@ d) -> (p @@ d) -> p @@ (d + 1)
forall (l :: Nat). SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1)
g SNat d
sn' (SNat d -> RTree d a -> p @@ d
forall (m :: Nat). SNat m -> RTree m a -> p @@ m
go SNat d
sn' RTree d a
l) (SNat d -> RTree d a -> p @@ d
forall (m :: Nat). SNat m -> RTree m a -> p @@ m
go SNat d
sn' RTree d a
r)
{-# CLASH_OPAQUE tdfold #-}
{-# ANN tdfold hasBlackBox #-}
data TfoldTree (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (TfoldTree a) d = a
tfold :: forall d a b .
KnownNat d
=> (a -> b)
-> (b -> b -> b)
-> RTree d a
-> b
tfold :: (a -> b) -> (b -> b -> b) -> RTree d a -> b
tfold a -> b
f b -> b -> b
g = Proxy (TfoldTree b)
-> (a -> TfoldTree b @@ 0)
-> (forall (l :: Nat).
SNat l
-> (TfoldTree b @@ l)
-> (TfoldTree b @@ l)
-> TfoldTree b @@ (l + 1))
-> RTree d a
-> TfoldTree b @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (TfoldTree b)
forall k (t :: k). Proxy t
Proxy @(TfoldTree b)) a -> b
a -> TfoldTree b @@ 0
f ((b -> b -> b) -> SNat l -> b -> b -> b
forall a b. a -> b -> a
const b -> b -> b
g)
treplicate :: forall d a . SNat d -> a -> RTree d a
treplicate :: SNat d -> a -> RTree d a
treplicate SNat d
sn a
a = UNat d -> RTree d a
forall (n :: Nat). UNat n -> RTree n a
go (SNat d -> UNat d
forall (n :: Nat). SNat n -> UNat n
toUNat SNat d
sn)
where
go :: UNat n -> RTree n a
go :: UNat n -> RTree n a
go UNat n
UZero = a -> RTree 0 a
forall a. a -> RTree 0 a
LR a
a
go (USucc UNat n
un) = RTree n a -> RTree n a -> RTree (n + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR (UNat n -> RTree n a
forall (n :: Nat). UNat n -> RTree n a
go UNat n
un) (UNat n -> RTree n a
forall (n :: Nat). UNat n -> RTree n a
go UNat n
un)
{-# CLASH_OPAQUE treplicate #-}
{-# ANN treplicate hasBlackBox #-}
trepeat :: KnownNat d => a -> RTree d a
trepeat :: a -> RTree d a
trepeat = SNat d -> a -> RTree d a
forall (d :: Nat) a. SNat d -> a -> RTree d a
treplicate SNat d
forall (n :: Nat). KnownNat n => SNat n
SNat
data MapTree (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (MapTree a) d = RTree d a
tmap :: forall d a b . KnownNat d => (a -> b) -> RTree d a -> RTree d b
tmap :: (a -> b) -> RTree d a -> RTree d b
tmap a -> b
f = Proxy (MapTree b)
-> (a -> MapTree b @@ 0)
-> (forall (l :: Nat).
SNat l
-> (MapTree b @@ l) -> (MapTree b @@ l) -> MapTree b @@ (l + 1))
-> RTree d a
-> MapTree b @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (MapTree b)
forall k (t :: k). Proxy t
Proxy @(MapTree b)) (b -> RTree 0 b
forall a. a -> RTree 0 a
LR (b -> RTree 0 b) -> (a -> b) -> a -> RTree 0 b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f) (\SNat l
_ MapTree b @@ l
l MapTree b @@ l
r -> RTree l b -> RTree l b -> RTree (l + 1) b
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR MapTree b @@ l
RTree l b
l MapTree b @@ l
RTree l b
r)
tindices :: forall d . KnownNat d => RTree d (Index (2^d))
tindices :: RTree d (Index (2 ^ d))
tindices =
Proxy (MapTree (Index (2 ^ d)))
-> (Index (2 ^ d) -> MapTree (Index (2 ^ d)) @@ 0)
-> (forall (l :: Nat).
SNat l
-> (MapTree (Index (2 ^ d)) @@ l)
-> (MapTree (Index (2 ^ d)) @@ l)
-> MapTree (Index (2 ^ d)) @@ (l + 1))
-> RTree d (Index (2 ^ d))
-> MapTree (Index (2 ^ d)) @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (MapTree (Index (2 ^ d)))
forall k (t :: k). Proxy t
Proxy @(MapTree (Index (2^d)))) Index (2 ^ d) -> MapTree (Index (2 ^ d)) @@ 0
forall a. a -> RTree 0 a
LR
(\s :: SNat l
s@SNat l
SNat MapTree (Index (2 ^ d)) @@ l
l MapTree (Index (2 ^ d)) @@ l
r -> RTree l (Index (2 ^ d))
-> RTree l (Index (2 ^ d)) -> RTree (l + 1) (Index (2 ^ d))
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR MapTree (Index (2 ^ d)) @@ l
RTree l (Index (2 ^ d))
l ((Index (2 ^ d) -> Index (2 ^ d))
-> RTree l (Index (2 ^ d)) -> RTree l (Index (2 ^ d))
forall (d :: Nat) a b.
KnownNat d =>
(a -> b) -> RTree d a -> RTree d b
tmap (Index (2 ^ d) -> Index (2 ^ d) -> Index (2 ^ d)
forall a. Num a => a -> a -> a
+(SNat (2 ^ l) -> Index (2 ^ d)
forall a (n :: Nat). Num a => SNat n -> a
snatToNum (SNat l -> SNat (2 ^ l)
forall (a :: Nat). SNat a -> SNat (2 ^ a)
pow2SNat SNat l
s))) MapTree (Index (2 ^ d)) @@ l
RTree l (Index (2 ^ d))
r))
(SNat d -> Index (2 ^ d) -> RTree d (Index (2 ^ d))
forall (d :: Nat) a. SNat d -> a -> RTree d a
treplicate SNat d
forall (n :: Nat). KnownNat n => SNat n
SNat Index (2 ^ d)
0)
data V2TTree (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (V2TTree a) d = RTree d a
v2t :: forall d a . KnownNat d => Vec (2^d) a -> RTree d a
v2t :: Vec (2 ^ d) a -> RTree d a
v2t = Proxy (V2TTree a)
-> (a -> V2TTree a @@ 0)
-> (forall (l :: Nat).
SNat l
-> (V2TTree a @@ l) -> (V2TTree a @@ l) -> V2TTree a @@ (l + 1))
-> Vec (2 ^ d) a
-> V2TTree a @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> Vec (2 ^ k) a
-> p @@ k
dtfold (Proxy (V2TTree a)
forall k (t :: k). Proxy t
Proxy @(V2TTree a)) a -> V2TTree a @@ 0
forall a. a -> RTree 0 a
LR ((RTree l a -> RTree l a -> RTree (l + 1) a)
-> SNat l -> RTree l a -> RTree l a -> RTree (l + 1) a
forall a b. a -> b -> a
const RTree l a -> RTree l a -> RTree (l + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR)
data T2VTree (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (T2VTree a) d = Vec (2^d) a
t2v :: forall d a . KnownNat d => RTree d a -> Vec (2^d) a
t2v :: RTree d a -> Vec (2 ^ d) a
t2v = Proxy (T2VTree a)
-> (a -> T2VTree a @@ 0)
-> (forall (l :: Nat).
SNat l
-> (T2VTree a @@ l) -> (T2VTree a @@ l) -> T2VTree a @@ (l + 1))
-> RTree d a
-> T2VTree a @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (T2VTree a)
forall k (t :: k). Proxy t
Proxy @(T2VTree a)) (a -> Vec 0 a -> Vec (0 + 1) a
forall a (n :: Nat). a -> Vec n a -> Vec (n + 1) a
:> Vec 0 a
forall a. Vec 0 a
Nil) (\SNat l
_ T2VTree a @@ l
l T2VTree a @@ l
r -> T2VTree a @@ l
Vec (2 ^ l) a
l Vec (2 ^ l) a -> Vec (2 ^ l) a -> Vec ((2 ^ l) + (2 ^ l)) a
forall (n :: Nat) a (m :: Nat). Vec n a -> Vec m a -> Vec (n + m) a
++ T2VTree a @@ l
Vec (2 ^ l) a
r)
indexTree :: (KnownNat d, Enum i) => RTree d a -> i -> a
indexTree :: RTree d a -> i -> a
indexTree RTree d a
t i
i = (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t) Vec (2 ^ d) a -> i -> a
forall (n :: Nat) i a. (KnownNat n, Enum i) => Vec n a -> i -> a
!! i
i
replaceTree :: (KnownNat d, Enum i) => i -> a -> RTree d a -> RTree d a
replaceTree :: i -> a -> RTree d a -> RTree d a
replaceTree i
i a
a = Vec (2 ^ d) a -> RTree d a
forall (d :: Nat) a. KnownNat d => Vec (2 ^ d) a -> RTree d a
v2t (Vec (2 ^ d) a -> RTree d a)
-> (RTree d a -> Vec (2 ^ d) a) -> RTree d a -> RTree d a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. i -> a -> Vec (2 ^ d) a -> Vec (2 ^ d) a
forall (n :: Nat) i a.
(KnownNat n, Enum i) =>
i -> a -> Vec n a -> Vec n a
replace i
i a
a (Vec (2 ^ d) a -> Vec (2 ^ d) a)
-> (RTree d a -> Vec (2 ^ d) a) -> RTree d a -> Vec (2 ^ d) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v
data ZipWithTree (b :: Type) (c :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (ZipWithTree b c) d = RTree d b -> RTree d c
tzipWith :: forall a b c d . KnownNat d => (a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith :: (a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith a -> b -> c
f = Proxy (ZipWithTree b c)
-> (a -> ZipWithTree b c @@ 0)
-> (forall (l :: Nat).
SNat l
-> (ZipWithTree b c @@ l)
-> (ZipWithTree b c @@ l)
-> ZipWithTree b c @@ (l + 1))
-> RTree d a
-> ZipWithTree b c @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (ZipWithTree b c)
forall k (t :: k). Proxy t
Proxy @(ZipWithTree b c)) a -> ZipWithTree b c @@ 0
a -> RTree 0 b -> RTree 0 c
lr forall (l :: Nat).
SNat l
-> (ZipWithTree b c @@ l)
-> (ZipWithTree b c @@ l)
-> ZipWithTree b c @@ (l + 1)
forall (l :: Nat).
SNat l
-> (RTree l b -> RTree l c)
-> (RTree l b -> RTree l c)
-> RTree (l + 1) b
-> RTree (l + 1) c
br
where
lr :: a -> RTree 0 b -> RTree 0 c
lr :: a -> RTree 0 b -> RTree 0 c
lr a
a RTree 0 b
t = c -> RTree 0 c
forall a. a -> RTree 0 a
LR (a -> b -> c
f a
a (RTree 0 b -> b
forall a. RTree 0 a -> a
textract RTree 0 b
t))
br :: SNat l
-> (RTree l b -> RTree l c)
-> (RTree l b -> RTree l c)
-> RTree (l+1) b
-> RTree (l+1) c
br :: SNat l
-> (RTree l b -> RTree l c)
-> (RTree l b -> RTree l c)
-> RTree (l + 1) b
-> RTree (l + 1) c
br SNat l
_ RTree l b -> RTree l c
fl RTree l b -> RTree l c
fr RTree (l + 1) b
t = RTree l c -> RTree l c -> RTree (l + 1) c
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR (RTree l b -> RTree l c
fl RTree l b
l) (RTree l b -> RTree l c
fr RTree l b
r)
where
(RTree l b
l,RTree l b
r) = RTree (l + 1) b -> (RTree l b, RTree l b)
forall (d :: Nat) a. RTree (d + 1) a -> (RTree d a, RTree d a)
tsplit RTree (l + 1) b
t
tzip :: KnownNat d => RTree d a -> RTree d b -> RTree d (a,b)
tzip :: RTree d a -> RTree d b -> RTree d (a, b)
tzip = (a -> b -> (a, b)) -> RTree d a -> RTree d b -> RTree d (a, b)
forall a b c (d :: Nat).
KnownNat d =>
(a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith (,)
data UnzipTree (a :: Type) (b :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (UnzipTree a b) d = (RTree d a, RTree d b)
tunzip :: forall d a b . KnownNat d => RTree d (a,b) -> (RTree d a,RTree d b)
tunzip :: RTree d (a, b) -> (RTree d a, RTree d b)
tunzip = Proxy (UnzipTree a b)
-> ((a, b) -> UnzipTree a b @@ 0)
-> (forall (l :: Nat).
SNat l
-> (UnzipTree a b @@ l)
-> (UnzipTree a b @@ l)
-> UnzipTree a b @@ (l + 1))
-> RTree d (a, b)
-> UnzipTree a b @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (UnzipTree a b)
forall k (t :: k). Proxy t
Proxy @(UnzipTree a b)) (a, b) -> UnzipTree a b @@ 0
forall a a. (a, a) -> (RTree 0 a, RTree 0 a)
lr forall p (d :: Nat) a (d :: Nat) a.
p
-> (RTree d a, RTree d a)
-> (RTree d a, RTree d a)
-> (RTree (d + 1) a, RTree (d + 1) a)
forall (l :: Nat).
SNat l
-> (UnzipTree a b @@ l)
-> (UnzipTree a b @@ l)
-> UnzipTree a b @@ (l + 1)
br
where
lr :: (a, a) -> (RTree 0 a, RTree 0 a)
lr (a
a,a
b) = (a -> RTree 0 a
forall a. a -> RTree 0 a
LR a
a,a -> RTree 0 a
forall a. a -> RTree 0 a
LR a
b)
br :: p
-> (RTree d a, RTree d a)
-> (RTree d a, RTree d a)
-> (RTree (d + 1) a, RTree (d + 1) a)
br p
_ (RTree d a
l1,RTree d a
r1) (RTree d a
l2,RTree d a
r2) = (RTree d a -> RTree d a -> RTree (d + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR RTree d a
l1 RTree d a
l2, RTree d a -> RTree d a -> RTree (d + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR RTree d a
r1 RTree d a
r2)
lazyT :: KnownNat d
=> RTree d a
-> RTree d a
lazyT :: RTree d a -> RTree d a
lazyT = (() -> a -> a) -> RTree d () -> RTree d a -> RTree d a
forall a b c (d :: Nat).
KnownNat d =>
(a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith ((a -> () -> a) -> () -> a -> a
forall a b c. (a -> b -> c) -> b -> a -> c
flip a -> () -> a
forall a b. a -> b -> a
const) (() -> RTree d ()
forall (d :: Nat) a. KnownNat d => a -> RTree d a
trepeat ())
thead :: RTree n a -> a
thead :: RTree n a -> a
thead (RLeaf a
x) = a
x
thead (RBranch RTree d a
x RTree d a
_) = RTree d a -> a
forall (n :: Nat) a. RTree n a -> a
thead RTree d a
x
tlast :: RTree n a -> a
tlast :: RTree n a -> a
tlast (RLeaf a
x) = a
x
tlast (RBranch RTree d a
_ RTree d a
y) = RTree d a -> a
forall (n :: Nat) a. RTree n a -> a
tlast RTree d a
y
scanlPar ::
KnownNat n =>
(a -> a -> a) ->
Vec (2^n) a ->
Vec (2^n) a
scanlPar :: (a -> a -> a) -> Vec (2 ^ n) a -> Vec (2 ^ n) a
scanlPar a -> a -> a
op = RTree n a -> Vec (2 ^ n) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v (RTree n a -> Vec (2 ^ n) a)
-> (Vec (2 ^ n) a -> RTree n a) -> Vec (2 ^ n) a -> Vec (2 ^ n) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> a -> a) -> RTree n a -> RTree n a
forall a (n :: Nat).
KnownNat n =>
(a -> a -> a) -> RTree n a -> RTree n a
tscanl a -> a -> a
op (RTree n a -> RTree n a)
-> (Vec (2 ^ n) a -> RTree n a) -> Vec (2 ^ n) a -> RTree n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Vec (2 ^ n) a -> RTree n a
forall (d :: Nat) a. KnownNat d => Vec (2 ^ d) a -> RTree d a
v2t
{-# INLINE scanlPar #-}
scanrPar ::
KnownNat n =>
(a -> a -> a) ->
Vec (2^n) a ->
Vec (2^n) a
scanrPar :: (a -> a -> a) -> Vec (2 ^ n) a -> Vec (2 ^ n) a
scanrPar a -> a -> a
op = RTree n a -> Vec (2 ^ n) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v (RTree n a -> Vec (2 ^ n) a)
-> (Vec (2 ^ n) a -> RTree n a) -> Vec (2 ^ n) a -> Vec (2 ^ n) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> a -> a) -> RTree n a -> RTree n a
forall a (n :: Nat).
KnownNat n =>
(a -> a -> a) -> RTree n a -> RTree n a
tscanr a -> a -> a
op (RTree n a -> RTree n a)
-> (Vec (2 ^ n) a -> RTree n a) -> Vec (2 ^ n) a -> RTree n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Vec (2 ^ n) a -> RTree n a
forall (d :: Nat) a. KnownNat d => Vec (2 ^ d) a -> RTree d a
v2t
{-# INLINE scanrPar #-}
tscanl ::
forall a n.
KnownNat n =>
(a -> a -> a) ->
RTree n a ->
RTree n a
tscanl :: (a -> a -> a) -> RTree n a -> RTree n a
tscanl a -> a -> a
op RTree n a
tr =
case RTree n a
tr of
RLeaf a
x -> a -> RTree 0 a
forall a. a -> RTree 0 a
LR a
x
RBranch RTree d a
x RTree d a
y ->
let
x' :: RTree d a
x' = (a -> a -> a) -> RTree d a -> RTree d a
forall a (n :: Nat).
KnownNat n =>
(a -> a -> a) -> RTree n a -> RTree n a
tscanl a -> a -> a
op RTree d a
x
y' :: RTree d a
y' = (a -> a -> a) -> RTree d a -> RTree d a
forall a (n :: Nat).
KnownNat n =>
(a -> a -> a) -> RTree n a -> RTree n a
tscanl a -> a -> a
op RTree d a
y
l :: a
l = RTree d a -> a
forall (n :: Nat) a. RTree n a -> a
tlast RTree d a
x'
in RTree d a -> RTree d a -> RTree (d + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR RTree d a
x' ((a -> a) -> RTree d a -> RTree d a
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (a
l a -> a -> a
`op`) RTree d a
y')
tscanr ::
forall a n.
KnownNat n =>
(a -> a -> a) ->
RTree n a ->
RTree n a
tscanr :: (a -> a -> a) -> RTree n a -> RTree n a
tscanr a -> a -> a
op RTree n a
tr =
case RTree n a
tr of
RLeaf a
x -> a -> RTree 0 a
forall a. a -> RTree 0 a
LR a
x
RBranch RTree d a
x RTree d a
y ->
let
x' :: RTree d a
x' = (a -> a -> a) -> RTree d a -> RTree d a
forall a (n :: Nat).
KnownNat n =>
(a -> a -> a) -> RTree n a -> RTree n a
tscanr a -> a -> a
op RTree d a
x
y' :: RTree d a
y' = (a -> a -> a) -> RTree d a -> RTree d a
forall a (n :: Nat).
KnownNat n =>
(a -> a -> a) -> RTree n a -> RTree n a
tscanr a -> a -> a
op RTree d a
y
l :: a
l = RTree d a -> a
forall (n :: Nat) a. RTree n a -> a
thead RTree d a
y'
in RTree d a -> RTree d a -> RTree (d + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR ((a -> a) -> RTree d a -> RTree d a
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (a
l a -> a -> a
`op`) RTree d a
x') RTree d a
y'