{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE PatternGuards #-}
#ifdef __GLASGOW_HASKELL__
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
#endif
#if !defined(TESTING) && defined(__GLASGOW_HASKELL__)
{-# LANGUAGE Trustworthy #-}
#endif
{-# OPTIONS_HADDOCK not-home #-}
#include "containers.h"
module Data.IntSet.Internal (
IntSet(..), Key
, Prefix, Mask, BitMap
, (\\)
, null
, size
, member
, notMember
, lookupLT
, lookupGT
, lookupLE
, lookupGE
, isSubsetOf
, isProperSubsetOf
, disjoint
, empty
, singleton
, insert
, delete
, alterF
, union
, unions
, difference
, intersection
, filter
, partition
, split
, splitMember
, splitRoot
, map
, mapMonotonic
, foldr
, foldl
, foldr'
, foldl'
, fold
, findMin
, findMax
, deleteMin
, deleteMax
, deleteFindMin
, deleteFindMax
, maxView
, minView
, elems
, toList
, fromList
, toAscList
, toDescList
, fromAscList
, fromDistinctAscList
, showTree
, showTreeWith
, match
, suffixBitMask
, prefixBitMask
, bitmapOf
, zero
) where
import Control.Applicative (Const(..))
import Control.DeepSeq (NFData(rnf))
import Data.Bits
import qualified Data.List as List
import Data.Maybe (fromMaybe)
import Data.Semigroup (Semigroup(stimes))
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup (Semigroup((<>)))
#endif
import Data.Semigroup (stimesIdempotentMonoid)
import Prelude hiding (filter, foldr, foldl, null, map)
import Utils.Containers.Internal.BitUtil
import Utils.Containers.Internal.StrictPair
#if __GLASGOW_HASKELL__
import Data.Data (Data(..), Constr, mkConstr, constrIndex, DataType, mkDataType)
import qualified Data.Data
import Text.Read
#endif
#if __GLASGOW_HASKELL__
import qualified GHC.Exts
# if !(WORD_SIZE_IN_BITS==64)
import qualified GHC.Int
# endif
import Language.Haskell.TH.Syntax (Lift)
#endif
import qualified Data.Foldable as Foldable
import Data.Functor.Identity (Identity(..))
infixl 9 \\
type Nat = Word
natFromInt :: Int -> Nat
natFromInt :: Int -> Nat
natFromInt Int
i = Int -> Nat
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i
{-# INLINE natFromInt #-}
intFromNat :: Nat -> Int
intFromNat :: Nat -> Int
intFromNat Nat
w = Nat -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Nat
w
{-# INLINE intFromNat #-}
(\\) :: IntSet -> IntSet -> IntSet
IntSet
m1 \\ :: IntSet -> IntSet -> IntSet
\\ IntSet
m2 = IntSet -> IntSet -> IntSet
difference IntSet
m1 IntSet
m2
data IntSet = Bin {-# UNPACK #-} !Prefix {-# UNPACK #-} !Mask !IntSet !IntSet
| Tip {-# UNPACK #-} !Prefix {-# UNPACK #-} !BitMap
| Nil
type Prefix = Int
type Mask = Int
type BitMap = Word
type Key = Int
#ifdef __GLASGOW_HASKELL__
deriving instance Lift IntSet
#endif
instance Monoid IntSet where
mempty :: IntSet
mempty = IntSet
empty
mconcat :: [IntSet] -> IntSet
mconcat = [IntSet] -> IntSet
forall (f :: * -> *). Foldable f => f IntSet -> IntSet
unions
mappend :: IntSet -> IntSet -> IntSet
mappend = IntSet -> IntSet -> IntSet
forall a. Semigroup a => a -> a -> a
(<>)
instance Semigroup IntSet where
<> :: IntSet -> IntSet -> IntSet
(<>) = IntSet -> IntSet -> IntSet
union
stimes :: b -> IntSet -> IntSet
stimes = b -> IntSet -> IntSet
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid
#if __GLASGOW_HASKELL__
instance Data IntSet where
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> IntSet -> c IntSet
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z IntSet
is = ([Int] -> IntSet) -> c ([Int] -> IntSet)
forall g. g -> c g
z [Int] -> IntSet
fromList c ([Int] -> IntSet) -> [Int] -> c IntSet
forall d b. Data d => c (d -> b) -> d -> c b
`f` (IntSet -> [Int]
toList IntSet
is)
toConstr :: IntSet -> Constr
toConstr IntSet
_ = Constr
fromListConstr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c IntSet
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Int
constrIndex Constr
c of
Int
1 -> c ([Int] -> IntSet) -> c IntSet
forall b r. Data b => c (b -> r) -> c r
k (([Int] -> IntSet) -> c ([Int] -> IntSet)
forall r. r -> c r
z [Int] -> IntSet
fromList)
Int
_ -> [Char] -> c IntSet
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
dataTypeOf :: IntSet -> DataType
dataTypeOf IntSet
_ = DataType
intSetDataType
fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
intSetDataType [Char]
"fromList" [] Fixity
Data.Data.Prefix
intSetDataType :: DataType
intSetDataType :: DataType
intSetDataType = [Char] -> [Constr] -> DataType
mkDataType [Char]
"Data.IntSet.Internal.IntSet" [Constr
fromListConstr]
#endif
null :: IntSet -> Bool
null :: IntSet -> Bool
null IntSet
Nil = Bool
True
null IntSet
_ = Bool
False
{-# INLINE null #-}
size :: IntSet -> Int
size :: IntSet -> Int
size = Int -> IntSet -> Int
go Int
0
where
go :: Int -> IntSet -> Int
go !Int
acc (Bin Int
_ Int
_ IntSet
l IntSet
r) = Int -> IntSet -> Int
go (Int -> IntSet -> Int
go Int
acc IntSet
l) IntSet
r
go Int
acc (Tip Int
_ Nat
bm) = Int
acc Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int -> Nat -> Int
bitcount Int
0 Nat
bm
go Int
acc IntSet
Nil = Int
acc
member :: Key -> IntSet -> Bool
member :: Int -> IntSet -> Bool
member !Int
x = IntSet -> Bool
go
where
go :: IntSet -> Bool
go (Bin Int
p Int
m IntSet
l IntSet
r)
| Int -> Int -> Int -> Bool
nomatch Int
x Int
p Int
m = Bool
False
| Int -> Int -> Bool
zero Int
x Int
m = IntSet -> Bool
go IntSet
l
| Bool
otherwise = IntSet -> Bool
go IntSet
r
go (Tip Int
y Nat
bm) = Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
y Bool -> Bool -> Bool
&& Int -> Nat
bitmapOf Int
x Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
/= Nat
0
go IntSet
Nil = Bool
False
notMember :: Key -> IntSet -> Bool
notMember :: Int -> IntSet -> Bool
notMember Int
k = Bool -> Bool
not (Bool -> Bool) -> (IntSet -> Bool) -> IntSet -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> IntSet -> Bool
member Int
k
lookupLT :: Key -> IntSet -> Maybe Key
lookupLT :: Int -> IntSet -> Maybe Int
lookupLT !Int
x IntSet
t = case IntSet
t of
Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntSet -> IntSet -> Maybe Int
go IntSet
r IntSet
l else IntSet -> IntSet -> Maybe Int
go IntSet
Nil IntSet
r
IntSet
_ -> IntSet -> IntSet -> Maybe Int
go IntSet
Nil IntSet
t
where
go :: IntSet -> IntSet -> Maybe Int
go IntSet
def (Bin Int
p Int
m IntSet
l IntSet
r) | Int -> Int -> Int -> Bool
nomatch Int
x Int
p Int
m = if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntSet -> Maybe Int
unsafeFindMax IntSet
def else IntSet -> Maybe Int
unsafeFindMax IntSet
r
| Int -> Int -> Bool
zero Int
x Int
m = IntSet -> IntSet -> Maybe Int
go IntSet
def IntSet
l
| Bool
otherwise = IntSet -> IntSet -> Maybe Int
go IntSet
l IntSet
r
go IntSet
def (Tip Int
kx Nat
bm) | Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
kx = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
highestBitSet Nat
bm
| Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx Bool -> Bool -> Bool
&& Nat
maskLT Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
/= Nat
0 = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
highestBitSet Nat
maskLT
| Bool
otherwise = IntSet -> Maybe Int
unsafeFindMax IntSet
def
where maskLT :: Nat
maskLT = (Int -> Nat
bitmapOf Int
x Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm
go IntSet
def IntSet
Nil = IntSet -> Maybe Int
unsafeFindMax IntSet
def
lookupGT :: Key -> IntSet -> Maybe Key
lookupGT :: Int -> IntSet -> Maybe Int
lookupGT !Int
x IntSet
t = case IntSet
t of
Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntSet -> IntSet -> Maybe Int
go IntSet
Nil IntSet
l else IntSet -> IntSet -> Maybe Int
go IntSet
l IntSet
r
IntSet
_ -> IntSet -> IntSet -> Maybe Int
go IntSet
Nil IntSet
t
where
go :: IntSet -> IntSet -> Maybe Int
go IntSet
def (Bin Int
p Int
m IntSet
l IntSet
r) | Int -> Int -> Int -> Bool
nomatch Int
x Int
p Int
m = if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntSet -> Maybe Int
unsafeFindMin IntSet
l else IntSet -> Maybe Int
unsafeFindMin IntSet
def
| Int -> Int -> Bool
zero Int
x Int
m = IntSet -> IntSet -> Maybe Int
go IntSet
r IntSet
l
| Bool
otherwise = IntSet -> IntSet -> Maybe Int
go IntSet
def IntSet
r
go IntSet
def (Tip Int
kx Nat
bm) | Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
kx = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
lowestBitSet Nat
bm
| Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx Bool -> Bool -> Bool
&& Nat
maskGT Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
/= Nat
0 = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
lowestBitSet Nat
maskGT
| Bool
otherwise = IntSet -> Maybe Int
unsafeFindMin IntSet
def
where maskGT :: Nat
maskGT = (- ((Int -> Nat
bitmapOf Int
x) Nat -> Int -> Nat
`shiftLL` Int
1)) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm
go IntSet
def IntSet
Nil = IntSet -> Maybe Int
unsafeFindMin IntSet
def
lookupLE :: Key -> IntSet -> Maybe Key
lookupLE :: Int -> IntSet -> Maybe Int
lookupLE !Int
x IntSet
t = case IntSet
t of
Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntSet -> IntSet -> Maybe Int
go IntSet
r IntSet
l else IntSet -> IntSet -> Maybe Int
go IntSet
Nil IntSet
r
IntSet
_ -> IntSet -> IntSet -> Maybe Int
go IntSet
Nil IntSet
t
where
go :: IntSet -> IntSet -> Maybe Int
go IntSet
def (Bin Int
p Int
m IntSet
l IntSet
r) | Int -> Int -> Int -> Bool
nomatch Int
x Int
p Int
m = if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntSet -> Maybe Int
unsafeFindMax IntSet
def else IntSet -> Maybe Int
unsafeFindMax IntSet
r
| Int -> Int -> Bool
zero Int
x Int
m = IntSet -> IntSet -> Maybe Int
go IntSet
def IntSet
l
| Bool
otherwise = IntSet -> IntSet -> Maybe Int
go IntSet
l IntSet
r
go IntSet
def (Tip Int
kx Nat
bm) | Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
kx = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
highestBitSet Nat
bm
| Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx Bool -> Bool -> Bool
&& Nat
maskLE Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
/= Nat
0 = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
highestBitSet Nat
maskLE
| Bool
otherwise = IntSet -> Maybe Int
unsafeFindMax IntSet
def
where maskLE :: Nat
maskLE = (((Int -> Nat
bitmapOf Int
x) Nat -> Int -> Nat
`shiftLL` Int
1) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm
go IntSet
def IntSet
Nil = IntSet -> Maybe Int
unsafeFindMax IntSet
def
lookupGE :: Key -> IntSet -> Maybe Key
lookupGE :: Int -> IntSet -> Maybe Int
lookupGE !Int
x IntSet
t = case IntSet
t of
Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntSet -> IntSet -> Maybe Int
go IntSet
Nil IntSet
l else IntSet -> IntSet -> Maybe Int
go IntSet
l IntSet
r
IntSet
_ -> IntSet -> IntSet -> Maybe Int
go IntSet
Nil IntSet
t
where
go :: IntSet -> IntSet -> Maybe Int
go IntSet
def (Bin Int
p Int
m IntSet
l IntSet
r) | Int -> Int -> Int -> Bool
nomatch Int
x Int
p Int
m = if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntSet -> Maybe Int
unsafeFindMin IntSet
l else IntSet -> Maybe Int
unsafeFindMin IntSet
def
| Int -> Int -> Bool
zero Int
x Int
m = IntSet -> IntSet -> Maybe Int
go IntSet
r IntSet
l
| Bool
otherwise = IntSet -> IntSet -> Maybe Int
go IntSet
def IntSet
r
go IntSet
def (Tip Int
kx Nat
bm) | Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
kx = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
lowestBitSet Nat
bm
| Int -> Int
prefixOf Int
x Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx Bool -> Bool -> Bool
&& Nat
maskGE Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
/= Nat
0 = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
lowestBitSet Nat
maskGE
| Bool
otherwise = IntSet -> Maybe Int
unsafeFindMin IntSet
def
where maskGE :: Nat
maskGE = (- (Int -> Nat
bitmapOf Int
x)) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm
go IntSet
def IntSet
Nil = IntSet -> Maybe Int
unsafeFindMin IntSet
def
unsafeFindMin :: IntSet -> Maybe Key
unsafeFindMin :: IntSet -> Maybe Int
unsafeFindMin IntSet
Nil = Maybe Int
forall a. Maybe a
Nothing
unsafeFindMin (Tip Int
kx Nat
bm) = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
lowestBitSet Nat
bm
unsafeFindMin (Bin Int
_ Int
_ IntSet
l IntSet
_) = IntSet -> Maybe Int
unsafeFindMin IntSet
l
unsafeFindMax :: IntSet -> Maybe Key
unsafeFindMax :: IntSet -> Maybe Int
unsafeFindMax IntSet
Nil = Maybe Int
forall a. Maybe a
Nothing
unsafeFindMax (Tip Int
kx Nat
bm) = Int -> Maybe Int
forall a. a -> Maybe a
Just (Int -> Maybe Int) -> Int -> Maybe Int
forall a b. (a -> b) -> a -> b
$ Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
highestBitSet Nat
bm
unsafeFindMax (Bin Int
_ Int
_ IntSet
_ IntSet
r) = IntSet -> Maybe Int
unsafeFindMax IntSet
r
empty :: IntSet
empty :: IntSet
empty
= IntSet
Nil
{-# INLINE empty #-}
singleton :: Key -> IntSet
singleton :: Int -> IntSet
singleton Int
x
= Int -> Nat -> IntSet
Tip (Int -> Int
prefixOf Int
x) (Int -> Nat
bitmapOf Int
x)
{-# INLINE singleton #-}
insert :: Key -> IntSet -> IntSet
insert :: Int -> IntSet -> IntSet
insert !Int
x = Int -> Nat -> IntSet -> IntSet
insertBM (Int -> Int
prefixOf Int
x) (Int -> Nat
bitmapOf Int
x)
insertBM :: Prefix -> BitMap -> IntSet -> IntSet
insertBM :: Int -> Nat -> IntSet -> IntSet
insertBM !Int
kx !Nat
bm t :: IntSet
t@(Bin Int
p Int
m IntSet
l IntSet
r)
| Int -> Int -> Int -> Bool
nomatch Int
kx Int
p Int
m = Int -> IntSet -> Int -> IntSet -> IntSet
link Int
kx (Int -> Nat -> IntSet
Tip Int
kx Nat
bm) Int
p IntSet
t
| Int -> Int -> Bool
zero Int
kx Int
m = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p Int
m (Int -> Nat -> IntSet -> IntSet
insertBM Int
kx Nat
bm IntSet
l) IntSet
r
| Bool
otherwise = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p Int
m IntSet
l (Int -> Nat -> IntSet -> IntSet
insertBM Int
kx Nat
bm IntSet
r)
insertBM Int
kx Nat
bm t :: IntSet
t@(Tip Int
kx' Nat
bm')
| Int
kx' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx = Int -> Nat -> IntSet
Tip Int
kx' (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Nat
bm')
| Bool
otherwise = Int -> IntSet -> Int -> IntSet -> IntSet
link Int
kx (Int -> Nat -> IntSet
Tip Int
kx Nat
bm) Int
kx' IntSet
t
insertBM Int
kx Nat
bm IntSet
Nil = Int -> Nat -> IntSet
Tip Int
kx Nat
bm
delete :: Key -> IntSet -> IntSet
delete :: Int -> IntSet -> IntSet
delete !Int
x = Int -> Nat -> IntSet -> IntSet
deleteBM (Int -> Int
prefixOf Int
x) (Int -> Nat
bitmapOf Int
x)
deleteBM :: Prefix -> BitMap -> IntSet -> IntSet
deleteBM :: Int -> Nat -> IntSet -> IntSet
deleteBM !Int
kx !Nat
bm t :: IntSet
t@(Bin Int
p Int
m IntSet
l IntSet
r)
| Int -> Int -> Int -> Bool
nomatch Int
kx Int
p Int
m = IntSet
t
| Int -> Int -> Bool
zero Int
kx Int
m = Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m (Int -> Nat -> IntSet -> IntSet
deleteBM Int
kx Nat
bm IntSet
l) IntSet
r
| Bool
otherwise = Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m IntSet
l (Int -> Nat -> IntSet -> IntSet
deleteBM Int
kx Nat
bm IntSet
r)
deleteBM Int
kx Nat
bm t :: IntSet
t@(Tip Int
kx' Nat
bm')
| Int
kx' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx = Int -> Nat -> IntSet
tip Int
kx (Nat
bm' Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat -> Nat
forall a. Bits a => a -> a
complement Nat
bm)
| Bool
otherwise = IntSet
t
deleteBM Int
_ Nat
_ IntSet
Nil = IntSet
Nil
alterF :: Functor f => (Bool -> f Bool) -> Key -> IntSet -> f IntSet
alterF :: (Bool -> f Bool) -> Int -> IntSet -> f IntSet
alterF Bool -> f Bool
f Int
k IntSet
s = (Bool -> IntSet) -> f Bool -> f IntSet
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Bool -> IntSet
choose (Bool -> f Bool
f Bool
member_)
where
member_ :: Bool
member_ = Int -> IntSet -> Bool
member Int
k IntSet
s
(IntSet
inserted, IntSet
deleted)
| Bool
member_ = (IntSet
s , Int -> IntSet -> IntSet
delete Int
k IntSet
s)
| Bool
otherwise = (Int -> IntSet -> IntSet
insert Int
k IntSet
s, IntSet
s )
choose :: Bool -> IntSet
choose Bool
True = IntSet
inserted
choose Bool
False = IntSet
deleted
#ifndef __GLASGOW_HASKELL__
{-# INLINE alterF #-}
#else
{-# INLINABLE [2] alterF #-}
{-# RULES
"alterF/Const" forall k (f :: Bool -> Const a Bool) . alterF f k = \s -> Const . getConst . f $ member k s
#-}
#endif
{-# SPECIALIZE alterF :: (Bool -> Identity Bool) -> Key -> IntSet -> Identity IntSet #-}
unions :: Foldable f => f IntSet -> IntSet
unions :: f IntSet -> IntSet
unions f IntSet
xs
= (IntSet -> IntSet -> IntSet) -> IntSet -> f IntSet -> IntSet
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' IntSet -> IntSet -> IntSet
union IntSet
empty f IntSet
xs
union :: IntSet -> IntSet -> IntSet
union :: IntSet -> IntSet -> IntSet
union t1 :: IntSet
t1@(Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) t2 :: IntSet
t2@(Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = IntSet
union1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = IntSet
union2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p1 Int
m1 (IntSet -> IntSet -> IntSet
union IntSet
l1 IntSet
l2) (IntSet -> IntSet -> IntSet
union IntSet
r1 IntSet
r2)
| Bool
otherwise = Int -> IntSet -> Int -> IntSet -> IntSet
link Int
p1 IntSet
t1 Int
p2 IntSet
t2
where
union1 :: IntSet
union1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = Int -> IntSet -> Int -> IntSet -> IntSet
link Int
p1 IntSet
t1 Int
p2 IntSet
t2
| Int -> Int -> Bool
zero Int
p2 Int
m1 = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p1 Int
m1 (IntSet -> IntSet -> IntSet
union IntSet
l1 IntSet
t2) IntSet
r1
| Bool
otherwise = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p1 Int
m1 IntSet
l1 (IntSet -> IntSet -> IntSet
union IntSet
r1 IntSet
t2)
union2 :: IntSet
union2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = Int -> IntSet -> Int -> IntSet -> IntSet
link Int
p1 IntSet
t1 Int
p2 IntSet
t2
| Int -> Int -> Bool
zero Int
p1 Int
m2 = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p2 Int
m2 (IntSet -> IntSet -> IntSet
union IntSet
t1 IntSet
l2) IntSet
r2
| Bool
otherwise = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p2 Int
m2 IntSet
l2 (IntSet -> IntSet -> IntSet
union IntSet
t1 IntSet
r2)
union t :: IntSet
t@(Bin Int
_ Int
_ IntSet
_ IntSet
_) (Tip Int
kx Nat
bm) = Int -> Nat -> IntSet -> IntSet
insertBM Int
kx Nat
bm IntSet
t
union t :: IntSet
t@(Bin Int
_ Int
_ IntSet
_ IntSet
_) IntSet
Nil = IntSet
t
union (Tip Int
kx Nat
bm) IntSet
t = Int -> Nat -> IntSet -> IntSet
insertBM Int
kx Nat
bm IntSet
t
union IntSet
Nil IntSet
t = IntSet
t
difference :: IntSet -> IntSet -> IntSet
difference :: IntSet -> IntSet -> IntSet
difference t1 :: IntSet
t1@(Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) t2 :: IntSet
t2@(Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = IntSet
difference1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = IntSet
difference2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p1 Int
m1 (IntSet -> IntSet -> IntSet
difference IntSet
l1 IntSet
l2) (IntSet -> IntSet -> IntSet
difference IntSet
r1 IntSet
r2)
| Bool
otherwise = IntSet
t1
where
difference1 :: IntSet
difference1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = IntSet
t1
| Int -> Int -> Bool
zero Int
p2 Int
m1 = Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p1 Int
m1 (IntSet -> IntSet -> IntSet
difference IntSet
l1 IntSet
t2) IntSet
r1
| Bool
otherwise = Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p1 Int
m1 IntSet
l1 (IntSet -> IntSet -> IntSet
difference IntSet
r1 IntSet
t2)
difference2 :: IntSet
difference2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = IntSet
t1
| Int -> Int -> Bool
zero Int
p1 Int
m2 = IntSet -> IntSet -> IntSet
difference IntSet
t1 IntSet
l2
| Bool
otherwise = IntSet -> IntSet -> IntSet
difference IntSet
t1 IntSet
r2
difference t :: IntSet
t@(Bin Int
_ Int
_ IntSet
_ IntSet
_) (Tip Int
kx Nat
bm) = Int -> Nat -> IntSet -> IntSet
deleteBM Int
kx Nat
bm IntSet
t
difference t :: IntSet
t@(Bin Int
_ Int
_ IntSet
_ IntSet
_) IntSet
Nil = IntSet
t
difference t1 :: IntSet
t1@(Tip Int
kx Nat
bm) IntSet
t2 = IntSet -> IntSet
differenceTip IntSet
t2
where differenceTip :: IntSet -> IntSet
differenceTip (Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2) | Int -> Int -> Int -> Bool
nomatch Int
kx Int
p2 Int
m2 = IntSet
t1
| Int -> Int -> Bool
zero Int
kx Int
m2 = IntSet -> IntSet
differenceTip IntSet
l2
| Bool
otherwise = IntSet -> IntSet
differenceTip IntSet
r2
differenceTip (Tip Int
kx2 Nat
bm2) | Int
kx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx2 = Int -> Nat -> IntSet
tip Int
kx (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat -> Nat
forall a. Bits a => a -> a
complement Nat
bm2)
| Bool
otherwise = IntSet
t1
differenceTip IntSet
Nil = IntSet
t1
difference IntSet
Nil IntSet
_ = IntSet
Nil
intersection :: IntSet -> IntSet -> IntSet
intersection :: IntSet -> IntSet -> IntSet
intersection t1 :: IntSet
t1@(Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) t2 :: IntSet
t2@(Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = IntSet
intersection1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = IntSet
intersection2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p1 Int
m1 (IntSet -> IntSet -> IntSet
intersection IntSet
l1 IntSet
l2) (IntSet -> IntSet -> IntSet
intersection IntSet
r1 IntSet
r2)
| Bool
otherwise = IntSet
Nil
where
intersection1 :: IntSet
intersection1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = IntSet
Nil
| Int -> Int -> Bool
zero Int
p2 Int
m1 = IntSet -> IntSet -> IntSet
intersection IntSet
l1 IntSet
t2
| Bool
otherwise = IntSet -> IntSet -> IntSet
intersection IntSet
r1 IntSet
t2
intersection2 :: IntSet
intersection2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = IntSet
Nil
| Int -> Int -> Bool
zero Int
p1 Int
m2 = IntSet -> IntSet -> IntSet
intersection IntSet
t1 IntSet
l2
| Bool
otherwise = IntSet -> IntSet -> IntSet
intersection IntSet
t1 IntSet
r2
intersection t1 :: IntSet
t1@(Bin Int
_ Int
_ IntSet
_ IntSet
_) (Tip Int
kx2 Nat
bm2) = IntSet -> IntSet
intersectBM IntSet
t1
where intersectBM :: IntSet -> IntSet
intersectBM (Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) | Int -> Int -> Int -> Bool
nomatch Int
kx2 Int
p1 Int
m1 = IntSet
Nil
| Int -> Int -> Bool
zero Int
kx2 Int
m1 = IntSet -> IntSet
intersectBM IntSet
l1
| Bool
otherwise = IntSet -> IntSet
intersectBM IntSet
r1
intersectBM (Tip Int
kx1 Nat
bm1) | Int
kx1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx2 = Int -> Nat -> IntSet
tip Int
kx1 (Nat
bm1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm2)
| Bool
otherwise = IntSet
Nil
intersectBM IntSet
Nil = IntSet
Nil
intersection (Bin Int
_ Int
_ IntSet
_ IntSet
_) IntSet
Nil = IntSet
Nil
intersection (Tip Int
kx1 Nat
bm1) IntSet
t2 = IntSet -> IntSet
intersectBM IntSet
t2
where intersectBM :: IntSet -> IntSet
intersectBM (Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2) | Int -> Int -> Int -> Bool
nomatch Int
kx1 Int
p2 Int
m2 = IntSet
Nil
| Int -> Int -> Bool
zero Int
kx1 Int
m2 = IntSet -> IntSet
intersectBM IntSet
l2
| Bool
otherwise = IntSet -> IntSet
intersectBM IntSet
r2
intersectBM (Tip Int
kx2 Nat
bm2) | Int
kx1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx2 = Int -> Nat -> IntSet
tip Int
kx1 (Nat
bm1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm2)
| Bool
otherwise = IntSet
Nil
intersectBM IntSet
Nil = IntSet
Nil
intersection IntSet
Nil IntSet
_ = IntSet
Nil
isProperSubsetOf :: IntSet -> IntSet -> Bool
isProperSubsetOf :: IntSet -> IntSet -> Bool
isProperSubsetOf IntSet
t1 IntSet
t2
= case IntSet -> IntSet -> Ordering
subsetCmp IntSet
t1 IntSet
t2 of
Ordering
LT -> Bool
True
Ordering
_ -> Bool
False
subsetCmp :: IntSet -> IntSet -> Ordering
subsetCmp :: IntSet -> IntSet -> Ordering
subsetCmp t1 :: IntSet
t1@(Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) (Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = Ordering
GT
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = case Ordering
subsetCmpLt of
Ordering
GT -> Ordering
GT
Ordering
_ -> Ordering
LT
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Ordering
subsetCmpEq
| Bool
otherwise = Ordering
GT
where
subsetCmpLt :: Ordering
subsetCmpLt | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = Ordering
GT
| Int -> Int -> Bool
zero Int
p1 Int
m2 = IntSet -> IntSet -> Ordering
subsetCmp IntSet
t1 IntSet
l2
| Bool
otherwise = IntSet -> IntSet -> Ordering
subsetCmp IntSet
t1 IntSet
r2
subsetCmpEq :: Ordering
subsetCmpEq = case (IntSet -> IntSet -> Ordering
subsetCmp IntSet
l1 IntSet
l2, IntSet -> IntSet -> Ordering
subsetCmp IntSet
r1 IntSet
r2) of
(Ordering
GT,Ordering
_ ) -> Ordering
GT
(Ordering
_ ,Ordering
GT) -> Ordering
GT
(Ordering
EQ,Ordering
EQ) -> Ordering
EQ
(Ordering, Ordering)
_ -> Ordering
LT
subsetCmp (Bin Int
_ Int
_ IntSet
_ IntSet
_) IntSet
_ = Ordering
GT
subsetCmp (Tip Int
kx1 Nat
bm1) (Tip Int
kx2 Nat
bm2)
| Int
kx1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
kx2 = Ordering
GT
| Nat
bm1 Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
bm2 = Ordering
EQ
| Nat
bm1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat -> Nat
forall a. Bits a => a -> a
complement Nat
bm2 Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
0 = Ordering
LT
| Bool
otherwise = Ordering
GT
subsetCmp t1 :: IntSet
t1@(Tip Int
kx Nat
_) (Bin Int
p Int
m IntSet
l IntSet
r)
| Int -> Int -> Int -> Bool
nomatch Int
kx Int
p Int
m = Ordering
GT
| Int -> Int -> Bool
zero Int
kx Int
m = case IntSet -> IntSet -> Ordering
subsetCmp IntSet
t1 IntSet
l of Ordering
GT -> Ordering
GT ; Ordering
_ -> Ordering
LT
| Bool
otherwise = case IntSet -> IntSet -> Ordering
subsetCmp IntSet
t1 IntSet
r of Ordering
GT -> Ordering
GT ; Ordering
_ -> Ordering
LT
subsetCmp (Tip Int
_ Nat
_) IntSet
Nil = Ordering
GT
subsetCmp IntSet
Nil IntSet
Nil = Ordering
EQ
subsetCmp IntSet
Nil IntSet
_ = Ordering
LT
isSubsetOf :: IntSet -> IntSet -> Bool
isSubsetOf :: IntSet -> IntSet -> Bool
isSubsetOf t1 :: IntSet
t1@(Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) (Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = Bool
False
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = Int -> Int -> Int -> Bool
match Int
p1 Int
p2 Int
m2 Bool -> Bool -> Bool
&& (if Int -> Int -> Bool
zero Int
p1 Int
m2 then IntSet -> IntSet -> Bool
isSubsetOf IntSet
t1 IntSet
l2
else IntSet -> IntSet -> Bool
isSubsetOf IntSet
t1 IntSet
r2)
| Bool
otherwise = (Int
p1Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
p2) Bool -> Bool -> Bool
&& IntSet -> IntSet -> Bool
isSubsetOf IntSet
l1 IntSet
l2 Bool -> Bool -> Bool
&& IntSet -> IntSet -> Bool
isSubsetOf IntSet
r1 IntSet
r2
isSubsetOf (Bin Int
_ Int
_ IntSet
_ IntSet
_) IntSet
_ = Bool
False
isSubsetOf (Tip Int
kx1 Nat
bm1) (Tip Int
kx2 Nat
bm2) = Int
kx1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx2 Bool -> Bool -> Bool
&& Nat
bm1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat -> Nat
forall a. Bits a => a -> a
complement Nat
bm2 Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
0
isSubsetOf t1 :: IntSet
t1@(Tip Int
kx Nat
_) (Bin Int
p Int
m IntSet
l IntSet
r)
| Int -> Int -> Int -> Bool
nomatch Int
kx Int
p Int
m = Bool
False
| Int -> Int -> Bool
zero Int
kx Int
m = IntSet -> IntSet -> Bool
isSubsetOf IntSet
t1 IntSet
l
| Bool
otherwise = IntSet -> IntSet -> Bool
isSubsetOf IntSet
t1 IntSet
r
isSubsetOf (Tip Int
_ Nat
_) IntSet
Nil = Bool
False
isSubsetOf IntSet
Nil IntSet
_ = Bool
True
disjoint :: IntSet -> IntSet -> Bool
disjoint :: IntSet -> IntSet -> Bool
disjoint t1 :: IntSet
t1@(Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) t2 :: IntSet
t2@(Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = Bool
disjoint1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = Bool
disjoint2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = IntSet -> IntSet -> Bool
disjoint IntSet
l1 IntSet
l2 Bool -> Bool -> Bool
&& IntSet -> IntSet -> Bool
disjoint IntSet
r1 IntSet
r2
| Bool
otherwise = Bool
True
where
disjoint1 :: Bool
disjoint1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = Bool
True
| Int -> Int -> Bool
zero Int
p2 Int
m1 = IntSet -> IntSet -> Bool
disjoint IntSet
l1 IntSet
t2
| Bool
otherwise = IntSet -> IntSet -> Bool
disjoint IntSet
r1 IntSet
t2
disjoint2 :: Bool
disjoint2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = Bool
True
| Int -> Int -> Bool
zero Int
p1 Int
m2 = IntSet -> IntSet -> Bool
disjoint IntSet
t1 IntSet
l2
| Bool
otherwise = IntSet -> IntSet -> Bool
disjoint IntSet
t1 IntSet
r2
disjoint t1 :: IntSet
t1@(Bin Int
_ Int
_ IntSet
_ IntSet
_) (Tip Int
kx2 Nat
bm2) = IntSet -> Bool
disjointBM IntSet
t1
where disjointBM :: IntSet -> Bool
disjointBM (Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) | Int -> Int -> Int -> Bool
nomatch Int
kx2 Int
p1 Int
m1 = Bool
True
| Int -> Int -> Bool
zero Int
kx2 Int
m1 = IntSet -> Bool
disjointBM IntSet
l1
| Bool
otherwise = IntSet -> Bool
disjointBM IntSet
r1
disjointBM (Tip Int
kx1 Nat
bm1) | Int
kx1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx2 = (Nat
bm1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm2) Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
0
| Bool
otherwise = Bool
True
disjointBM IntSet
Nil = Bool
True
disjoint (Bin Int
_ Int
_ IntSet
_ IntSet
_) IntSet
Nil = Bool
True
disjoint (Tip Int
kx1 Nat
bm1) IntSet
t2 = IntSet -> Bool
disjointBM IntSet
t2
where disjointBM :: IntSet -> Bool
disjointBM (Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2) | Int -> Int -> Int -> Bool
nomatch Int
kx1 Int
p2 Int
m2 = Bool
True
| Int -> Int -> Bool
zero Int
kx1 Int
m2 = IntSet -> Bool
disjointBM IntSet
l2
| Bool
otherwise = IntSet -> Bool
disjointBM IntSet
r2
disjointBM (Tip Int
kx2 Nat
bm2) | Int
kx1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx2 = (Nat
bm1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bm2) Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
0
| Bool
otherwise = Bool
True
disjointBM IntSet
Nil = Bool
True
disjoint IntSet
Nil IntSet
_ = Bool
True
filter :: (Key -> Bool) -> IntSet -> IntSet
filter :: (Int -> Bool) -> IntSet -> IntSet
filter Int -> Bool
predicate IntSet
t
= case IntSet
t of
Bin Int
p Int
m IntSet
l IntSet
r
-> Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m ((Int -> Bool) -> IntSet -> IntSet
filter Int -> Bool
predicate IntSet
l) ((Int -> Bool) -> IntSet -> IntSet
filter Int -> Bool
predicate IntSet
r)
Tip Int
kx Nat
bm
-> Int -> Nat -> IntSet
tip Int
kx (Int -> (Nat -> Int -> Nat) -> Nat -> Nat -> Nat
forall a. Int -> (a -> Int -> a) -> a -> Nat -> a
foldl'Bits Int
0 (Int -> Nat -> Int -> Nat
bitPred Int
kx) Nat
0 Nat
bm)
IntSet
Nil -> IntSet
Nil
where bitPred :: Int -> Nat -> Int -> Nat
bitPred Int
kx Nat
bm Int
bi | Int -> Bool
predicate (Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
bi) = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Int -> Nat
bitmapOfSuffix Int
bi
| Bool
otherwise = Nat
bm
{-# INLINE bitPred #-}
partition :: (Key -> Bool) -> IntSet -> (IntSet,IntSet)
partition :: (Int -> Bool) -> IntSet -> (IntSet, IntSet)
partition Int -> Bool
predicate0 IntSet
t0 = StrictPair IntSet IntSet -> (IntSet, IntSet)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair IntSet IntSet -> (IntSet, IntSet))
-> StrictPair IntSet IntSet -> (IntSet, IntSet)
forall a b. (a -> b) -> a -> b
$ (Int -> Bool) -> IntSet -> StrictPair IntSet IntSet
go Int -> Bool
predicate0 IntSet
t0
where
go :: (Int -> Bool) -> IntSet -> StrictPair IntSet IntSet
go Int -> Bool
predicate IntSet
t
= case IntSet
t of
Bin Int
p Int
m IntSet
l IntSet
r
-> let (IntSet
l1 :*: IntSet
l2) = (Int -> Bool) -> IntSet -> StrictPair IntSet IntSet
go Int -> Bool
predicate IntSet
l
(IntSet
r1 :*: IntSet
r2) = (Int -> Bool) -> IntSet -> StrictPair IntSet IntSet
go Int -> Bool
predicate IntSet
r
in Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m IntSet
l1 IntSet
r1 IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m IntSet
l2 IntSet
r2
Tip Int
kx Nat
bm
-> let bm1 :: Nat
bm1 = Int -> (Nat -> Int -> Nat) -> Nat -> Nat -> Nat
forall a. Int -> (a -> Int -> a) -> a -> Nat -> a
foldl'Bits Int
0 (Int -> Nat -> Int -> Nat
bitPred Int
kx) Nat
0 Nat
bm
in Int -> Nat -> IntSet
tip Int
kx Nat
bm1 IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: Int -> Nat -> IntSet
tip Int
kx (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bm1)
IntSet
Nil -> (IntSet
Nil IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: IntSet
Nil)
where bitPred :: Int -> Nat -> Int -> Nat
bitPred Int
kx Nat
bm Int
bi | Int -> Bool
predicate (Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
bi) = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Int -> Nat
bitmapOfSuffix Int
bi
| Bool
otherwise = Nat
bm
{-# INLINE bitPred #-}
split :: Key -> IntSet -> (IntSet,IntSet)
split :: Int -> IntSet -> (IntSet, IntSet)
split Int
x IntSet
t =
case IntSet
t of
Bin Int
_ Int
m IntSet
l IntSet
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0
then case Int -> IntSet -> StrictPair IntSet IntSet
go Int
x IntSet
l of (IntSet
lt :*: IntSet
gt) -> let !lt' :: IntSet
lt' = IntSet -> IntSet -> IntSet
union IntSet
lt IntSet
r
in (IntSet
lt', IntSet
gt)
else case Int -> IntSet -> StrictPair IntSet IntSet
go Int
x IntSet
r of (IntSet
lt :*: IntSet
gt) -> let !gt' :: IntSet
gt' = IntSet -> IntSet -> IntSet
union IntSet
gt IntSet
l
in (IntSet
lt, IntSet
gt')
IntSet
_ -> case Int -> IntSet -> StrictPair IntSet IntSet
go Int
x IntSet
t of
(IntSet
lt :*: IntSet
gt) -> (IntSet
lt, IntSet
gt)
where
go :: Int -> IntSet -> StrictPair IntSet IntSet
go !Int
x' t' :: IntSet
t'@(Bin Int
p Int
m IntSet
l IntSet
r)
| Int -> Int -> Int -> Bool
match Int
x' Int
p Int
m = if Int -> Int -> Bool
zero Int
x' Int
m
then case Int -> IntSet -> StrictPair IntSet IntSet
go Int
x' IntSet
l of
(IntSet
lt :*: IntSet
gt) -> IntSet
lt IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: IntSet -> IntSet -> IntSet
union IntSet
gt IntSet
r
else case Int -> IntSet -> StrictPair IntSet IntSet
go Int
x' IntSet
r of
(IntSet
lt :*: IntSet
gt) -> IntSet -> IntSet -> IntSet
union IntSet
lt IntSet
l IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: IntSet
gt
| Bool
otherwise = if Int
x' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then (IntSet
Nil IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: IntSet
t')
else (IntSet
t' IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: IntSet
Nil)
go Int
x' t' :: IntSet
t'@(Tip Int
kx' Nat
bm)
| Int
kx' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
x' = (IntSet
Nil IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: IntSet
t')
| Int
kx' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int -> Int
prefixOf Int
x' = (IntSet
t' IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: IntSet
Nil)
| Bool
otherwise = Int -> Nat -> IntSet
tip Int
kx' (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
lowerBitmap) IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: Int -> Nat -> IntSet
tip Int
kx' (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
higherBitmap)
where lowerBitmap :: Nat
lowerBitmap = Int -> Nat
bitmapOf Int
x' Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
higherBitmap :: Nat
higherBitmap = Nat -> Nat
forall a. Bits a => a -> a
complement (Nat
lowerBitmap Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Int -> Nat
bitmapOf Int
x')
go Int
_ IntSet
Nil = (IntSet
Nil IntSet -> IntSet -> StrictPair IntSet IntSet
forall a b. a -> b -> StrictPair a b
:*: IntSet
Nil)
splitMember :: Key -> IntSet -> (IntSet,Bool,IntSet)
splitMember :: Int -> IntSet -> (IntSet, Bool, IntSet)
splitMember Int
x IntSet
t =
case IntSet
t of
Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0
then case Int -> IntSet -> (IntSet, Bool, IntSet)
go Int
x IntSet
l of
(IntSet
lt, Bool
fnd, IntSet
gt) -> let !lt' :: IntSet
lt' = IntSet -> IntSet -> IntSet
union IntSet
lt IntSet
r
in (IntSet
lt', Bool
fnd, IntSet
gt)
else case Int -> IntSet -> (IntSet, Bool, IntSet)
go Int
x IntSet
r of
(IntSet
lt, Bool
fnd, IntSet
gt) -> let !gt' :: IntSet
gt' = IntSet -> IntSet -> IntSet
union IntSet
gt IntSet
l
in (IntSet
lt, Bool
fnd, IntSet
gt')
IntSet
_ -> Int -> IntSet -> (IntSet, Bool, IntSet)
go Int
x IntSet
t
where
go :: Int -> IntSet -> (IntSet, Bool, IntSet)
go Int
x' t' :: IntSet
t'@(Bin Int
p Int
m IntSet
l IntSet
r)
| Int -> Int -> Int -> Bool
match Int
x' Int
p Int
m = if Int -> Int -> Bool
zero Int
x' Int
m
then case Int -> IntSet -> (IntSet, Bool, IntSet)
go Int
x' IntSet
l of
(IntSet
lt, Bool
fnd, IntSet
gt) -> (IntSet
lt, Bool
fnd, IntSet -> IntSet -> IntSet
union IntSet
gt IntSet
r)
else case Int -> IntSet -> (IntSet, Bool, IntSet)
go Int
x' IntSet
r of
(IntSet
lt, Bool
fnd, IntSet
gt) -> (IntSet -> IntSet -> IntSet
union IntSet
lt IntSet
l, Bool
fnd, IntSet
gt)
| Bool
otherwise = if Int
x' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then (IntSet
Nil, Bool
False, IntSet
t') else (IntSet
t', Bool
False, IntSet
Nil)
go Int
x' t' :: IntSet
t'@(Tip Int
kx' Nat
bm)
| Int
kx' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
x' = (IntSet
Nil, Bool
False, IntSet
t')
| Int
kx' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int -> Int
prefixOf Int
x' = (IntSet
t', Bool
False, IntSet
Nil)
| Bool
otherwise = let !lt :: IntSet
lt = Int -> Nat -> IntSet
tip Int
kx' (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
lowerBitmap)
!found :: Bool
found = (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
bitmapOfx') Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
/= Nat
0
!gt :: IntSet
gt = Int -> Nat -> IntSet
tip Int
kx' (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
higherBitmap)
in (IntSet
lt, Bool
found, IntSet
gt)
where bitmapOfx' :: Nat
bitmapOfx' = Int -> Nat
bitmapOf Int
x'
lowerBitmap :: Nat
lowerBitmap = Nat
bitmapOfx' Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
higherBitmap :: Nat
higherBitmap = Nat -> Nat
forall a. Bits a => a -> a
complement (Nat
lowerBitmap Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
bitmapOfx')
go Int
_ IntSet
Nil = (IntSet
Nil, Bool
False, IntSet
Nil)
maxView :: IntSet -> Maybe (Key, IntSet)
maxView :: IntSet -> Maybe (Int, IntSet)
maxView IntSet
t =
case IntSet
t of IntSet
Nil -> Maybe (Int, IntSet)
forall a. Maybe a
Nothing
Bin Int
p Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> case IntSet -> (Int, IntSet)
go IntSet
l of (Int
result, IntSet
l') -> (Int, IntSet) -> Maybe (Int, IntSet)
forall a. a -> Maybe a
Just (Int
result, Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m IntSet
l' IntSet
r)
IntSet
_ -> (Int, IntSet) -> Maybe (Int, IntSet)
forall a. a -> Maybe a
Just (IntSet -> (Int, IntSet)
go IntSet
t)
where
go :: IntSet -> (Int, IntSet)
go (Bin Int
p Int
m IntSet
l IntSet
r) = case IntSet -> (Int, IntSet)
go IntSet
r of (Int
result, IntSet
r') -> (Int
result, Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m IntSet
l IntSet
r')
go (Tip Int
kx Nat
bm) = case Nat -> Int
highestBitSet Nat
bm of Int
bi -> (Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
bi, Int -> Nat -> IntSet
tip Int
kx (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat -> Nat
forall a. Bits a => a -> a
complement (Int -> Nat
bitmapOfSuffix Int
bi)))
go IntSet
Nil = [Char] -> (Int, IntSet)
forall a. HasCallStack => [Char] -> a
error [Char]
"maxView Nil"
minView :: IntSet -> Maybe (Key, IntSet)
minView :: IntSet -> Maybe (Int, IntSet)
minView IntSet
t =
case IntSet
t of IntSet
Nil -> Maybe (Int, IntSet)
forall a. Maybe a
Nothing
Bin Int
p Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> case IntSet -> (Int, IntSet)
go IntSet
r of (Int
result, IntSet
r') -> (Int, IntSet) -> Maybe (Int, IntSet)
forall a. a -> Maybe a
Just (Int
result, Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m IntSet
l IntSet
r')
IntSet
_ -> (Int, IntSet) -> Maybe (Int, IntSet)
forall a. a -> Maybe a
Just (IntSet -> (Int, IntSet)
go IntSet
t)
where
go :: IntSet -> (Int, IntSet)
go (Bin Int
p Int
m IntSet
l IntSet
r) = case IntSet -> (Int, IntSet)
go IntSet
l of (Int
result, IntSet
l') -> (Int
result, Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
p Int
m IntSet
l' IntSet
r)
go (Tip Int
kx Nat
bm) = case Nat -> Int
lowestBitSet Nat
bm of Int
bi -> (Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
bi, Int -> Nat -> IntSet
tip Int
kx (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat -> Nat
forall a. Bits a => a -> a
complement (Int -> Nat
bitmapOfSuffix Int
bi)))
go IntSet
Nil = [Char] -> (Int, IntSet)
forall a. HasCallStack => [Char] -> a
error [Char]
"minView Nil"
deleteFindMin :: IntSet -> (Key, IntSet)
deleteFindMin :: IntSet -> (Int, IntSet)
deleteFindMin = (Int, IntSet) -> Maybe (Int, IntSet) -> (Int, IntSet)
forall a. a -> Maybe a -> a
fromMaybe ([Char] -> (Int, IntSet)
forall a. HasCallStack => [Char] -> a
error [Char]
"deleteFindMin: empty set has no minimal element") (Maybe (Int, IntSet) -> (Int, IntSet))
-> (IntSet -> Maybe (Int, IntSet)) -> IntSet -> (Int, IntSet)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> Maybe (Int, IntSet)
minView
deleteFindMax :: IntSet -> (Key, IntSet)
deleteFindMax :: IntSet -> (Int, IntSet)
deleteFindMax = (Int, IntSet) -> Maybe (Int, IntSet) -> (Int, IntSet)
forall a. a -> Maybe a -> a
fromMaybe ([Char] -> (Int, IntSet)
forall a. HasCallStack => [Char] -> a
error [Char]
"deleteFindMax: empty set has no maximal element") (Maybe (Int, IntSet) -> (Int, IntSet))
-> (IntSet -> Maybe (Int, IntSet)) -> IntSet -> (Int, IntSet)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> Maybe (Int, IntSet)
maxView
findMin :: IntSet -> Key
findMin :: IntSet -> Int
findMin IntSet
Nil = [Char] -> Int
forall a. HasCallStack => [Char] -> a
error [Char]
"findMin: empty set has no minimal element"
findMin (Tip Int
kx Nat
bm) = Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
lowestBitSet Nat
bm
findMin (Bin Int
_ Int
m IntSet
l IntSet
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = IntSet -> Int
find IntSet
r
| Bool
otherwise = IntSet -> Int
find IntSet
l
where find :: IntSet -> Int
find (Tip Int
kx Nat
bm) = Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
lowestBitSet Nat
bm
find (Bin Int
_ Int
_ IntSet
l' IntSet
_) = IntSet -> Int
find IntSet
l'
find IntSet
Nil = [Char] -> Int
forall a. HasCallStack => [Char] -> a
error [Char]
"findMin Nil"
findMax :: IntSet -> Key
findMax :: IntSet -> Int
findMax IntSet
Nil = [Char] -> Int
forall a. HasCallStack => [Char] -> a
error [Char]
"findMax: empty set has no maximal element"
findMax (Tip Int
kx Nat
bm) = Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
highestBitSet Nat
bm
findMax (Bin Int
_ Int
m IntSet
l IntSet
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = IntSet -> Int
find IntSet
l
| Bool
otherwise = IntSet -> Int
find IntSet
r
where find :: IntSet -> Int
find (Tip Int
kx Nat
bm) = Int
kx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Nat -> Int
highestBitSet Nat
bm
find (Bin Int
_ Int
_ IntSet
_ IntSet
r') = IntSet -> Int
find IntSet
r'
find IntSet
Nil = [Char] -> Int
forall a. HasCallStack => [Char] -> a
error [Char]
"findMax Nil"
deleteMin :: IntSet -> IntSet
deleteMin :: IntSet -> IntSet
deleteMin = IntSet
-> ((Int, IntSet) -> IntSet) -> Maybe (Int, IntSet) -> IntSet
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntSet
Nil (Int, IntSet) -> IntSet
forall a b. (a, b) -> b
snd (Maybe (Int, IntSet) -> IntSet)
-> (IntSet -> Maybe (Int, IntSet)) -> IntSet -> IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> Maybe (Int, IntSet)
minView
deleteMax :: IntSet -> IntSet
deleteMax :: IntSet -> IntSet
deleteMax = IntSet
-> ((Int, IntSet) -> IntSet) -> Maybe (Int, IntSet) -> IntSet
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntSet
Nil (Int, IntSet) -> IntSet
forall a b. (a, b) -> b
snd (Maybe (Int, IntSet) -> IntSet)
-> (IntSet -> Maybe (Int, IntSet)) -> IntSet -> IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> Maybe (Int, IntSet)
maxView
map :: (Key -> Key) -> IntSet -> IntSet
map :: (Int -> Int) -> IntSet -> IntSet
map Int -> Int
f = [Int] -> IntSet
fromList ([Int] -> IntSet) -> (IntSet -> [Int]) -> IntSet -> IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int) -> [Int] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
List.map Int -> Int
f ([Int] -> [Int]) -> (IntSet -> [Int]) -> IntSet -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> [Int]
toList
mapMonotonic :: (Key -> Key) -> IntSet -> IntSet
mapMonotonic :: (Int -> Int) -> IntSet -> IntSet
mapMonotonic Int -> Int
f = [Int] -> IntSet
fromDistinctAscList ([Int] -> IntSet) -> (IntSet -> [Int]) -> IntSet -> IntSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Int) -> [Int] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
List.map Int -> Int
f ([Int] -> [Int]) -> (IntSet -> [Int]) -> IntSet -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> [Int]
toAscList
fold :: (Key -> b -> b) -> b -> IntSet -> b
fold :: (Int -> b -> b) -> b -> IntSet -> b
fold = (Int -> b -> b) -> b -> IntSet -> b
forall b. (Int -> b -> b) -> b -> IntSet -> b
foldr
{-# INLINE fold #-}
foldr :: (Key -> b -> b) -> b -> IntSet -> b
foldr :: (Int -> b -> b) -> b -> IntSet -> b
foldr Int -> b -> b
f b
z = \IntSet
t ->
case IntSet
t of Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> b -> IntSet -> b
go (b -> IntSet -> b
go b
z IntSet
l) IntSet
r
| Bool
otherwise -> b -> IntSet -> b
go (b -> IntSet -> b
go b
z IntSet
r) IntSet
l
IntSet
_ -> b -> IntSet -> b
go b
z IntSet
t
where
go :: b -> IntSet -> b
go b
z' IntSet
Nil = b
z'
go b
z' (Tip Int
kx Nat
bm) = Int -> (Int -> b -> b) -> b -> Nat -> b
forall a. Int -> (Int -> a -> a) -> a -> Nat -> a
foldrBits Int
kx Int -> b -> b
f b
z' Nat
bm
go b
z' (Bin Int
_ Int
_ IntSet
l IntSet
r) = b -> IntSet -> b
go (b -> IntSet -> b
go b
z' IntSet
r) IntSet
l
{-# INLINE foldr #-}
foldr' :: (Key -> b -> b) -> b -> IntSet -> b
foldr' :: (Int -> b -> b) -> b -> IntSet -> b
foldr' Int -> b -> b
f b
z = \IntSet
t ->
case IntSet
t of Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> b -> IntSet -> b
go (b -> IntSet -> b
go b
z IntSet
l) IntSet
r
| Bool
otherwise -> b -> IntSet -> b
go (b -> IntSet -> b
go b
z IntSet
r) IntSet
l
IntSet
_ -> b -> IntSet -> b
go b
z IntSet
t
where
go :: b -> IntSet -> b
go !b
z' IntSet
Nil = b
z'
go b
z' (Tip Int
kx Nat
bm) = Int -> (Int -> b -> b) -> b -> Nat -> b
forall a. Int -> (Int -> a -> a) -> a -> Nat -> a
foldr'Bits Int
kx Int -> b -> b
f b
z' Nat
bm
go b
z' (Bin Int
_ Int
_ IntSet
l IntSet
r) = b -> IntSet -> b
go (b -> IntSet -> b
go b
z' IntSet
r) IntSet
l
{-# INLINE foldr' #-}
foldl :: (a -> Key -> a) -> a -> IntSet -> a
foldl :: (a -> Int -> a) -> a -> IntSet -> a
foldl a -> Int -> a
f a
z = \IntSet
t ->
case IntSet
t of Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> a -> IntSet -> a
go (a -> IntSet -> a
go a
z IntSet
r) IntSet
l
| Bool
otherwise -> a -> IntSet -> a
go (a -> IntSet -> a
go a
z IntSet
l) IntSet
r
IntSet
_ -> a -> IntSet -> a
go a
z IntSet
t
where
go :: a -> IntSet -> a
go a
z' IntSet
Nil = a
z'
go a
z' (Tip Int
kx Nat
bm) = Int -> (a -> Int -> a) -> a -> Nat -> a
forall a. Int -> (a -> Int -> a) -> a -> Nat -> a
foldlBits Int
kx a -> Int -> a
f a
z' Nat
bm
go a
z' (Bin Int
_ Int
_ IntSet
l IntSet
r) = a -> IntSet -> a
go (a -> IntSet -> a
go a
z' IntSet
l) IntSet
r
{-# INLINE foldl #-}
foldl' :: (a -> Key -> a) -> a -> IntSet -> a
foldl' :: (a -> Int -> a) -> a -> IntSet -> a
foldl' a -> Int -> a
f a
z = \IntSet
t ->
case IntSet
t of Bin Int
_ Int
m IntSet
l IntSet
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> a -> IntSet -> a
go (a -> IntSet -> a
go a
z IntSet
r) IntSet
l
| Bool
otherwise -> a -> IntSet -> a
go (a -> IntSet -> a
go a
z IntSet
l) IntSet
r
IntSet
_ -> a -> IntSet -> a
go a
z IntSet
t
where
go :: a -> IntSet -> a
go !a
z' IntSet
Nil = a
z'
go a
z' (Tip Int
kx Nat
bm) = Int -> (a -> Int -> a) -> a -> Nat -> a
forall a. Int -> (a -> Int -> a) -> a -> Nat -> a
foldl'Bits Int
kx a -> Int -> a
f a
z' Nat
bm
go a
z' (Bin Int
_ Int
_ IntSet
l IntSet
r) = a -> IntSet -> a
go (a -> IntSet -> a
go a
z' IntSet
l) IntSet
r
{-# INLINE foldl' #-}
elems :: IntSet -> [Key]
elems :: IntSet -> [Int]
elems
= IntSet -> [Int]
toAscList
#ifdef __GLASGOW_HASKELL__
instance GHC.Exts.IsList IntSet where
type Item IntSet = Key
fromList :: [Item IntSet] -> IntSet
fromList = [Int] -> IntSet
[Item IntSet] -> IntSet
fromList
toList :: IntSet -> [Item IntSet]
toList = IntSet -> [Int]
IntSet -> [Item IntSet]
toList
#endif
toList :: IntSet -> [Key]
toList :: IntSet -> [Int]
toList
= IntSet -> [Int]
toAscList
toAscList :: IntSet -> [Key]
toAscList :: IntSet -> [Int]
toAscList = (Int -> [Int] -> [Int]) -> [Int] -> IntSet -> [Int]
forall b. (Int -> b -> b) -> b -> IntSet -> b
foldr (:) []
toDescList :: IntSet -> [Key]
toDescList :: IntSet -> [Int]
toDescList = ([Int] -> Int -> [Int]) -> [Int] -> IntSet -> [Int]
forall a. (a -> Int -> a) -> a -> IntSet -> a
foldl ((Int -> [Int] -> [Int]) -> [Int] -> Int -> [Int]
forall a b c. (a -> b -> c) -> b -> a -> c
flip (:)) []
#if __GLASGOW_HASKELL__
foldrFB :: (Key -> b -> b) -> b -> IntSet -> b
foldrFB :: (Int -> b -> b) -> b -> IntSet -> b
foldrFB = (Int -> b -> b) -> b -> IntSet -> b
forall b. (Int -> b -> b) -> b -> IntSet -> b
foldr
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> Key -> a) -> a -> IntSet -> a
foldlFB :: (a -> Int -> a) -> a -> IntSet -> a
foldlFB = (a -> Int -> a) -> a -> IntSet -> a
forall a. (a -> Int -> a) -> a -> IntSet -> a
foldl
{-# INLINE[0] foldlFB #-}
{-# INLINE elems #-}
{-# INLINE toList #-}
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "IntSet.toAscList" [~1] forall s . toAscList s = GHC.Exts.build (\c n -> foldrFB c n s) #-}
{-# RULES "IntSet.toAscListBack" [1] foldrFB (:) [] = toAscList #-}
{-# RULES "IntSet.toDescList" [~1] forall s . toDescList s = GHC.Exts.build (\c n -> foldlFB (\xs x -> c x xs) n s) #-}
{-# RULES "IntSet.toDescListBack" [1] foldlFB (\xs x -> x : xs) [] = toDescList #-}
#endif
fromList :: [Key] -> IntSet
fromList :: [Int] -> IntSet
fromList [Int]
xs
= (IntSet -> Int -> IntSet) -> IntSet -> [Int] -> IntSet
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' IntSet -> Int -> IntSet
ins IntSet
empty [Int]
xs
where
ins :: IntSet -> Int -> IntSet
ins IntSet
t Int
x = Int -> IntSet -> IntSet
insert Int
x IntSet
t
fromAscList :: [Key] -> IntSet
fromAscList :: [Int] -> IntSet
fromAscList = [Int] -> IntSet
fromMonoList
{-# NOINLINE fromAscList #-}
fromDistinctAscList :: [Key] -> IntSet
fromDistinctAscList :: [Int] -> IntSet
fromDistinctAscList = [Int] -> IntSet
fromAscList
{-# INLINE fromDistinctAscList #-}
fromMonoList :: [Key] -> IntSet
fromMonoList :: [Int] -> IntSet
fromMonoList [] = IntSet
Nil
fromMonoList (Int
kx : [Int]
zs1) = Int -> Nat -> [Int] -> IntSet
addAll' (Int -> Int
prefixOf Int
kx) (Int -> Nat
bitmapOf Int
kx) [Int]
zs1
where
addAll' :: Int -> Nat -> [Int] -> IntSet
addAll' !Int
px !Nat
bm []
= Int -> Nat -> IntSet
Tip Int
px Nat
bm
addAll' !Int
px !Nat
bm (Int
ky : [Int]
zs)
| Int
px Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int -> Int
prefixOf Int
ky
= Int -> Nat -> [Int] -> IntSet
addAll' Int
px (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Int -> Nat
bitmapOf Int
ky) [Int]
zs
| Int
py <- Int -> Int
prefixOf Int
ky
, Int
m <- Int -> Int -> Int
branchMask Int
px Int
py
, Inserted IntSet
ty [Int]
zs' <- Int -> Int -> Nat -> [Int] -> Inserted
addMany' Int
m Int
py (Int -> Nat
bitmapOf Int
ky) [Int]
zs
= Int -> IntSet -> [Int] -> IntSet
addAll Int
px (Int -> Int -> IntSet -> IntSet -> IntSet
linkWithMask Int
m Int
py IntSet
ty (Int -> Nat -> IntSet
Tip Int
px Nat
bm)) [Int]
zs'
addAll :: Int -> IntSet -> [Int] -> IntSet
addAll !Int
_px !IntSet
tx []
= IntSet
tx
addAll !Int
px !IntSet
tx (Int
ky : [Int]
zs)
| Int
py <- Int -> Int
prefixOf Int
ky
, Int
m <- Int -> Int -> Int
branchMask Int
px Int
py
, Inserted IntSet
ty [Int]
zs' <- Int -> Int -> Nat -> [Int] -> Inserted
addMany' Int
m Int
py (Int -> Nat
bitmapOf Int
ky) [Int]
zs
= Int -> IntSet -> [Int] -> IntSet
addAll Int
px (Int -> Int -> IntSet -> IntSet -> IntSet
linkWithMask Int
m Int
py IntSet
ty IntSet
tx) [Int]
zs'
addMany' :: Int -> Int -> Nat -> [Int] -> Inserted
addMany' !Int
_m !Int
px !Nat
bm []
= IntSet -> [Int] -> Inserted
Inserted (Int -> Nat -> IntSet
Tip Int
px Nat
bm) []
addMany' !Int
m !Int
px !Nat
bm zs0 :: [Int]
zs0@(Int
ky : [Int]
zs)
| Int
px Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int -> Int
prefixOf Int
ky
= Int -> Int -> Nat -> [Int] -> Inserted
addMany' Int
m Int
px (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Int -> Nat
bitmapOf Int
ky) [Int]
zs
| Int -> Int -> Int
mask Int
px Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int -> Int -> Int
mask Int
ky Int
m
= IntSet -> [Int] -> Inserted
Inserted (Int -> Nat -> IntSet
Tip (Int -> Int
prefixOf Int
px) Nat
bm) [Int]
zs0
| Int
py <- Int -> Int
prefixOf Int
ky
, Int
mxy <- Int -> Int -> Int
branchMask Int
px Int
py
, Inserted IntSet
ty [Int]
zs' <- Int -> Int -> Nat -> [Int] -> Inserted
addMany' Int
mxy Int
py (Int -> Nat
bitmapOf Int
ky) [Int]
zs
= Int -> Int -> IntSet -> [Int] -> Inserted
addMany Int
m Int
px (Int -> Int -> IntSet -> IntSet -> IntSet
linkWithMask Int
mxy Int
py IntSet
ty (Int -> Nat -> IntSet
Tip Int
px Nat
bm)) [Int]
zs'
addMany :: Int -> Int -> IntSet -> [Int] -> Inserted
addMany !Int
_m !Int
_px IntSet
tx []
= IntSet -> [Int] -> Inserted
Inserted IntSet
tx []
addMany !Int
m !Int
px IntSet
tx zs0 :: [Int]
zs0@(Int
ky : [Int]
zs)
| Int -> Int -> Int
mask Int
px Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int -> Int -> Int
mask Int
ky Int
m
= IntSet -> [Int] -> Inserted
Inserted IntSet
tx [Int]
zs0
| Int
py <- Int -> Int
prefixOf Int
ky
, Int
mxy <- Int -> Int -> Int
branchMask Int
px Int
py
, Inserted IntSet
ty [Int]
zs' <- Int -> Int -> Nat -> [Int] -> Inserted
addMany' Int
mxy Int
py (Int -> Nat
bitmapOf Int
ky) [Int]
zs
= Int -> Int -> IntSet -> [Int] -> Inserted
addMany Int
m Int
px (Int -> Int -> IntSet -> IntSet -> IntSet
linkWithMask Int
mxy Int
py IntSet
ty IntSet
tx) [Int]
zs'
{-# INLINE fromMonoList #-}
data Inserted = Inserted !IntSet ![Key]
instance Eq IntSet where
IntSet
t1 == :: IntSet -> IntSet -> Bool
== IntSet
t2 = IntSet -> IntSet -> Bool
equal IntSet
t1 IntSet
t2
IntSet
t1 /= :: IntSet -> IntSet -> Bool
/= IntSet
t2 = IntSet -> IntSet -> Bool
nequal IntSet
t1 IntSet
t2
equal :: IntSet -> IntSet -> Bool
equal :: IntSet -> IntSet -> Bool
equal (Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) (Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
= (Int
m1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
m2) Bool -> Bool -> Bool
&& (Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2) Bool -> Bool -> Bool
&& (IntSet -> IntSet -> Bool
equal IntSet
l1 IntSet
l2) Bool -> Bool -> Bool
&& (IntSet -> IntSet -> Bool
equal IntSet
r1 IntSet
r2)
equal (Tip Int
kx1 Nat
bm1) (Tip Int
kx2 Nat
bm2)
= Int
kx1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx2 Bool -> Bool -> Bool
&& Nat
bm1 Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
bm2
equal IntSet
Nil IntSet
Nil = Bool
True
equal IntSet
_ IntSet
_ = Bool
False
nequal :: IntSet -> IntSet -> Bool
nequal :: IntSet -> IntSet -> Bool
nequal (Bin Int
p1 Int
m1 IntSet
l1 IntSet
r1) (Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
= (Int
m1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
m2) Bool -> Bool -> Bool
|| (Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
p2) Bool -> Bool -> Bool
|| (IntSet -> IntSet -> Bool
nequal IntSet
l1 IntSet
l2) Bool -> Bool -> Bool
|| (IntSet -> IntSet -> Bool
nequal IntSet
r1 IntSet
r2)
nequal (Tip Int
kx1 Nat
bm1) (Tip Int
kx2 Nat
bm2)
= Int
kx1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
kx2 Bool -> Bool -> Bool
|| Nat
bm1 Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
/= Nat
bm2
nequal IntSet
Nil IntSet
Nil = Bool
False
nequal IntSet
_ IntSet
_ = Bool
True
instance Ord IntSet where
compare :: IntSet -> IntSet -> Ordering
compare IntSet
s1 IntSet
s2 = [Int] -> [Int] -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (IntSet -> [Int]
toAscList IntSet
s1) (IntSet -> [Int]
toAscList IntSet
s2)
instance Show IntSet where
showsPrec :: Int -> IntSet -> ShowS
showsPrec Int
p IntSet
xs = Bool -> ShowS -> ShowS
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
[Char] -> ShowS
showString [Char]
"fromList " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Int] -> ShowS
forall a. Show a => a -> ShowS
shows (IntSet -> [Int]
toList IntSet
xs)
instance Read IntSet where
#ifdef __GLASGOW_HASKELL__
readPrec :: ReadPrec IntSet
readPrec = ReadPrec IntSet -> ReadPrec IntSet
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec IntSet -> ReadPrec IntSet)
-> ReadPrec IntSet -> ReadPrec IntSet
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec IntSet -> ReadPrec IntSet
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec IntSet -> ReadPrec IntSet)
-> ReadPrec IntSet -> ReadPrec IntSet
forall a b. (a -> b) -> a -> b
$ do
Ident [Char]
"fromList" <- ReadPrec Lexeme
lexP
[Int]
xs <- ReadPrec [Int]
forall a. Read a => ReadPrec a
readPrec
IntSet -> ReadPrec IntSet
forall (m :: * -> *) a. Monad m => a -> m a
return ([Int] -> IntSet
fromList [Int]
xs)
readListPrec :: ReadPrec [IntSet]
readListPrec = ReadPrec [IntSet]
forall a. Read a => ReadPrec [a]
readListPrecDefault
#else
readsPrec p = readParen (p > 10) $ \ r -> do
("fromList",s) <- lex r
(xs,t) <- reads s
return (fromList xs,t)
#endif
instance NFData IntSet where rnf :: IntSet -> ()
rnf IntSet
x = IntSet -> () -> ()
seq IntSet
x ()
showTree :: IntSet -> String
showTree :: IntSet -> [Char]
showTree IntSet
s
= Bool -> Bool -> IntSet -> [Char]
showTreeWith Bool
True Bool
False IntSet
s
showTreeWith :: Bool -> Bool -> IntSet -> String
showTreeWith :: Bool -> Bool -> IntSet -> [Char]
showTreeWith Bool
hang Bool
wide IntSet
t
| Bool
hang = (Bool -> [[Char]] -> IntSet -> ShowS
showsTreeHang Bool
wide [] IntSet
t) [Char]
""
| Bool
otherwise = (Bool -> [[Char]] -> [[Char]] -> IntSet -> ShowS
showsTree Bool
wide [] [] IntSet
t) [Char]
""
showsTree :: Bool -> [String] -> [String] -> IntSet -> ShowS
showsTree :: Bool -> [[Char]] -> [[Char]] -> IntSet -> ShowS
showsTree Bool
wide [[Char]]
lbars [[Char]]
rbars IntSet
t
= case IntSet
t of
Bin Int
p Int
m IntSet
l IntSet
r
-> Bool -> [[Char]] -> [[Char]] -> IntSet -> ShowS
showsTree Bool
wide ([[Char]] -> [[Char]]
withBar [[Char]]
rbars) ([[Char]] -> [[Char]]
withEmpty [[Char]]
rbars) IntSet
r ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
rbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
[[Char]] -> ShowS
showsBars [[Char]]
lbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString (Int -> Int -> [Char]
showBin Int
p Int
m) ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"\n" ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
lbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> [[Char]] -> IntSet -> ShowS
showsTree Bool
wide ([[Char]] -> [[Char]]
withEmpty [[Char]]
lbars) ([[Char]] -> [[Char]]
withBar [[Char]]
lbars) IntSet
l
Tip Int
kx Nat
bm
-> [[Char]] -> ShowS
showsBars [[Char]]
lbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
" " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> ShowS
forall a. Show a => a -> ShowS
shows Int
kx ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
" + " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Nat -> ShowS
showsBitMap Nat
bm ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"\n"
IntSet
Nil -> [[Char]] -> ShowS
showsBars [[Char]]
lbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"|\n"
showsTreeHang :: Bool -> [String] -> IntSet -> ShowS
showsTreeHang :: Bool -> [[Char]] -> IntSet -> ShowS
showsTreeHang Bool
wide [[Char]]
bars IntSet
t
= case IntSet
t of
Bin Int
p Int
m IntSet
l IntSet
r
-> [[Char]] -> ShowS
showsBars [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString (Int -> Int -> [Char]
showBin Int
p Int
m) ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"\n" ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> IntSet -> ShowS
showsTreeHang Bool
wide ([[Char]] -> [[Char]]
withBar [[Char]]
bars) IntSet
l ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> IntSet -> ShowS
showsTreeHang Bool
wide ([[Char]] -> [[Char]]
withEmpty [[Char]]
bars) IntSet
r
Tip Int
kx Nat
bm
-> [[Char]] -> ShowS
showsBars [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
" " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> ShowS
forall a. Show a => a -> ShowS
shows Int
kx ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
" + " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Nat -> ShowS
showsBitMap Nat
bm ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"\n"
IntSet
Nil -> [[Char]] -> ShowS
showsBars [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"|\n"
showBin :: Prefix -> Mask -> String
showBin :: Int -> Int -> [Char]
showBin Int
_ Int
_
= [Char]
"*"
showWide :: Bool -> [String] -> String -> String
showWide :: Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
bars
| Bool
wide = [Char] -> ShowS
showString ([[Char]] -> [Char]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[Char]] -> [[Char]]
forall a. [a] -> [a]
reverse [[Char]]
bars)) ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"|\n"
| Bool
otherwise = ShowS
forall a. a -> a
id
showsBars :: [String] -> ShowS
showsBars :: [[Char]] -> ShowS
showsBars [] = ShowS
forall a. a -> a
id
showsBars [[Char]]
bars = [Char] -> ShowS
showString ([[Char]] -> [Char]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[Char]] -> [[Char]]
forall a. [a] -> [a]
reverse ([[Char]] -> [[Char]]
forall a. [a] -> [a]
tail [[Char]]
bars))) ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
node
showsBitMap :: Word -> ShowS
showsBitMap :: Nat -> ShowS
showsBitMap = [Char] -> ShowS
showString ([Char] -> ShowS) -> (Nat -> [Char]) -> Nat -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Nat -> [Char]
showBitMap
showBitMap :: Word -> String
showBitMap :: Nat -> [Char]
showBitMap Nat
w = [Int] -> [Char]
forall a. Show a => a -> [Char]
show ([Int] -> [Char]) -> [Int] -> [Char]
forall a b. (a -> b) -> a -> b
$ Int -> (Int -> [Int] -> [Int]) -> [Int] -> Nat -> [Int]
forall a. Int -> (Int -> a -> a) -> a -> Nat -> a
foldrBits Int
0 (:) [] Nat
w
node :: String
node :: [Char]
node = [Char]
"+--"
withBar, withEmpty :: [String] -> [String]
withBar :: [[Char]] -> [[Char]]
withBar [[Char]]
bars = [Char]
"| "[Char] -> [[Char]] -> [[Char]]
forall a. a -> [a] -> [a]
:[[Char]]
bars
withEmpty :: [[Char]] -> [[Char]]
withEmpty [[Char]]
bars = [Char]
" "[Char] -> [[Char]] -> [[Char]]
forall a. a -> [a] -> [a]
:[[Char]]
bars
link :: Prefix -> IntSet -> Prefix -> IntSet -> IntSet
link :: Int -> IntSet -> Int -> IntSet -> IntSet
link Int
p1 IntSet
t1 Int
p2 IntSet
t2 = Int -> Int -> IntSet -> IntSet -> IntSet
linkWithMask (Int -> Int -> Int
branchMask Int
p1 Int
p2) Int
p1 IntSet
t1 IntSet
t2
{-# INLINE link #-}
linkWithMask :: Mask -> Prefix -> IntSet -> IntSet -> IntSet
linkWithMask :: Int -> Int -> IntSet -> IntSet -> IntSet
linkWithMask Int
m Int
p1 IntSet
t1 IntSet
t2
| Int -> Int -> Bool
zero Int
p1 Int
m = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p Int
m IntSet
t1 IntSet
t2
| Bool
otherwise = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p Int
m IntSet
t2 IntSet
t1
where
p :: Int
p = Int -> Int -> Int
mask Int
p1 Int
m
{-# INLINE linkWithMask #-}
bin :: Prefix -> Mask -> IntSet -> IntSet -> IntSet
bin :: Int -> Int -> IntSet -> IntSet -> IntSet
bin Int
_ Int
_ IntSet
l IntSet
Nil = IntSet
l
bin Int
_ Int
_ IntSet
Nil IntSet
r = IntSet
r
bin Int
p Int
m IntSet
l IntSet
r = Int -> Int -> IntSet -> IntSet -> IntSet
Bin Int
p Int
m IntSet
l IntSet
r
{-# INLINE bin #-}
tip :: Prefix -> BitMap -> IntSet
tip :: Int -> Nat -> IntSet
tip Int
_ Nat
0 = IntSet
Nil
tip Int
kx Nat
bm = Int -> Nat -> IntSet
Tip Int
kx Nat
bm
{-# INLINE tip #-}
suffixBitMask :: Int
suffixBitMask :: Int
suffixBitMask = Nat -> Int
forall b. FiniteBits b => b -> Int
finiteBitSize (Nat
forall a. HasCallStack => a
undefined::Word) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
{-# INLINE suffixBitMask #-}
prefixBitMask :: Int
prefixBitMask :: Int
prefixBitMask = Int -> Int
forall a. Bits a => a -> a
complement Int
suffixBitMask
{-# INLINE prefixBitMask #-}
prefixOf :: Int -> Prefix
prefixOf :: Int -> Int
prefixOf Int
x = Int
x Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
prefixBitMask
{-# INLINE prefixOf #-}
suffixOf :: Int -> Int
suffixOf :: Int -> Int
suffixOf Int
x = Int
x Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
suffixBitMask
{-# INLINE suffixOf #-}
bitmapOfSuffix :: Int -> BitMap
bitmapOfSuffix :: Int -> Nat
bitmapOfSuffix Int
s = Nat
1 Nat -> Int -> Nat
`shiftLL` Int
s
{-# INLINE bitmapOfSuffix #-}
bitmapOf :: Int -> BitMap
bitmapOf :: Int -> Nat
bitmapOf Int
x = Int -> Nat
bitmapOfSuffix (Int -> Int
suffixOf Int
x)
{-# INLINE bitmapOf #-}
zero :: Int -> Mask -> Bool
zero :: Int -> Int -> Bool
zero Int
i Int
m
= (Int -> Nat
natFromInt Int
i) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. (Int -> Nat
natFromInt Int
m) Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
0
{-# INLINE zero #-}
nomatch,match :: Int -> Prefix -> Mask -> Bool
nomatch :: Int -> Int -> Int -> Bool
nomatch Int
i Int
p Int
m
= (Int -> Int -> Int
mask Int
i Int
m) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
p
{-# INLINE nomatch #-}
match :: Int -> Int -> Int -> Bool
match Int
i Int
p Int
m
= (Int -> Int -> Int
mask Int
i Int
m) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p
{-# INLINE match #-}
mask :: Int -> Mask -> Prefix
mask :: Int -> Int -> Int
mask Int
i Int
m
= Nat -> Nat -> Int
maskW (Int -> Nat
natFromInt Int
i) (Int -> Nat
natFromInt Int
m)
{-# INLINE mask #-}
maskW :: Nat -> Nat -> Prefix
maskW :: Nat -> Nat -> Int
maskW Nat
i Nat
m
= Nat -> Int
intFromNat (Nat
i Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. (Nat -> Nat
forall a. Bits a => a -> a
complement (Nat
mNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
m))
{-# INLINE maskW #-}
shorter :: Mask -> Mask -> Bool
shorter :: Int -> Int -> Bool
shorter Int
m1 Int
m2
= (Int -> Nat
natFromInt Int
m1) Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
> (Int -> Nat
natFromInt Int
m2)
{-# INLINE shorter #-}
branchMask :: Prefix -> Prefix -> Mask
branchMask :: Int -> Int -> Int
branchMask Int
p1 Int
p2
= Nat -> Int
intFromNat (Nat -> Nat
highestBitMask (Int -> Nat
natFromInt Int
p1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Int -> Nat
natFromInt Int
p2))
{-# INLINE branchMask #-}
lowestBitSet :: Nat -> Int
highestBitSet :: Nat -> Int
foldlBits :: Int -> (a -> Int -> a) -> a -> Nat -> a
foldl'Bits :: Int -> (a -> Int -> a) -> a -> Nat -> a
foldrBits :: Int -> (Int -> a -> a) -> a -> Nat -> a
foldr'Bits :: Int -> (Int -> a -> a) -> a -> Nat -> a
{-# INLINE lowestBitSet #-}
{-# INLINE highestBitSet #-}
{-# INLINE foldlBits #-}
{-# INLINE foldl'Bits #-}
{-# INLINE foldrBits #-}
{-# INLINE foldr'Bits #-}
#if defined(__GLASGOW_HASKELL__) && (WORD_SIZE_IN_BITS==32 || WORD_SIZE_IN_BITS==64)
indexOfTheOnlyBit :: Nat -> Int
{-# INLINE indexOfTheOnlyBit #-}
#if WORD_SIZE_IN_BITS==64
indexOfTheOnlyBit :: Nat -> Int
indexOfTheOnlyBit Nat
bitmask = Nat -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros Nat
bitmask
lowestBitSet :: Nat -> Int
lowestBitSet Nat
x = Nat -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros Nat
x
highestBitSet :: Nat -> Int
highestBitSet Nat
x = WORD_SIZE_IN_BITS - 1 - countLeadingZeros x
#else
indexOfTheOnlyBit bitmask =
fromIntegral (GHC.Int.I8# (lsbArray `GHC.Exts.indexInt8OffAddr#` unboxInt (intFromNat ((bitmask * magic) `shiftRL` offset))))
where unboxInt (GHC.Exts.I# i) = i
#if WORD_SIZE_IN_BITS==32
magic = 0x077CB531
offset = 27
!lsbArray = "\0\1\28\2\29\14\24\3\30\22\20\15\25\17\4\8\31\27\13\23\21\19\16\7\26\12\18\6\11\5\10\9"#
#else
magic = 0x07EDD5E59A4E28C2
offset = 58
!lsbArray = "\63\0\58\1\59\47\53\2\60\39\48\27\54\33\42\3\61\51\37\40\49\18\28\20\55\30\34\11\43\14\22\4\62\57\46\52\38\26\32\41\50\36\17\19\29\10\13\21\56\45\25\31\35\16\9\12\44\24\15\8\23\7\6\5"#
#endif
lowestBitSet x = indexOfTheOnlyBit (lowestBitMask x)
highestBitSet x = indexOfTheOnlyBit (highestBitMask x)
#endif
lowestBitMask :: Nat -> Nat
lowestBitMask :: Nat -> Nat
lowestBitMask Nat
x = Nat
x Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat -> Nat
forall a. Num a => a -> a
negate Nat
x
{-# INLINE lowestBitMask #-}
revNat :: Nat -> Nat
#if WORD_SIZE_IN_BITS==32
revNat x1 = case ((x1 `shiftRL` 1) .&. 0x55555555) .|. ((x1 .&. 0x55555555) `shiftLL` 1) of
x2 -> case ((x2 `shiftRL` 2) .&. 0x33333333) .|. ((x2 .&. 0x33333333) `shiftLL` 2) of
x3 -> case ((x3 `shiftRL` 4) .&. 0x0F0F0F0F) .|. ((x3 .&. 0x0F0F0F0F) `shiftLL` 4) of
x4 -> case ((x4 `shiftRL` 8) .&. 0x00FF00FF) .|. ((x4 .&. 0x00FF00FF) `shiftLL` 8) of
x5 -> ( x5 `shiftRL` 16 ) .|. ( x5 `shiftLL` 16);
#else
revNat :: Nat -> Nat
revNat Nat
x1 = case ((Nat
x1 Nat -> Int -> Nat
`shiftRL` Int
1) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x5555555555555555) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. ((Nat
x1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x5555555555555555) Nat -> Int -> Nat
`shiftLL` Int
1) of
Nat
x2 -> case ((Nat
x2 Nat -> Int -> Nat
`shiftRL` Int
2) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x3333333333333333) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. ((Nat
x2 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x3333333333333333) Nat -> Int -> Nat
`shiftLL` Int
2) of
Nat
x3 -> case ((Nat
x3 Nat -> Int -> Nat
`shiftRL` Int
4) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x0F0F0F0F0F0F0F0F) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. ((Nat
x3 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x0F0F0F0F0F0F0F0F) Nat -> Int -> Nat
`shiftLL` Int
4) of
Nat
x4 -> case ((Nat
x4 Nat -> Int -> Nat
`shiftRL` Int
8) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x00FF00FF00FF00FF) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. ((Nat
x4 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x00FF00FF00FF00FF) Nat -> Int -> Nat
`shiftLL` Int
8) of
Nat
x5 -> case ((Nat
x5 Nat -> Int -> Nat
`shiftRL` Int
16) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x0000FFFF0000FFFF) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. ((Nat
x5 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
0x0000FFFF0000FFFF) Nat -> Int -> Nat
`shiftLL` Int
16) of
Nat
x6 -> ( Nat
x6 Nat -> Int -> Nat
`shiftRL` Int
32 ) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. ( Nat
x6 Nat -> Int -> Nat
`shiftLL` Int
32);
#endif
foldlBits :: Int -> (a -> Int -> a) -> a -> Nat -> a
foldlBits Int
prefix a -> Int -> a
f a
z Nat
bitmap = Nat -> a -> a
go Nat
bitmap a
z
where go :: Nat -> a -> a
go Nat
0 a
acc = a
acc
go Nat
bm a
acc = Nat -> a -> a
go (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bitmask) ((a -> Int -> a
f a
acc) (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$! (Int
prefixInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bi))
where
!bitmask :: Nat
bitmask = Nat -> Nat
lowestBitMask Nat
bm
!bi :: Int
bi = Nat -> Int
indexOfTheOnlyBit Nat
bitmask
foldl'Bits :: Int -> (a -> Int -> a) -> a -> Nat -> a
foldl'Bits Int
prefix a -> Int -> a
f a
z Nat
bitmap = Nat -> a -> a
go Nat
bitmap a
z
where go :: Nat -> a -> a
go Nat
0 a
acc = a
acc
go Nat
bm !a
acc = Nat -> a -> a
go (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bitmask) ((a -> Int -> a
f a
acc) (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$! (Int
prefixInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bi))
where !bitmask :: Nat
bitmask = Nat -> Nat
lowestBitMask Nat
bm
!bi :: Int
bi = Nat -> Int
indexOfTheOnlyBit Nat
bitmask
foldrBits :: Int -> (Int -> a -> a) -> a -> Nat -> a
foldrBits Int
prefix Int -> a -> a
f a
z Nat
bitmap = Nat -> a -> a
go (Nat -> Nat
revNat Nat
bitmap) a
z
where go :: Nat -> a -> a
go Nat
0 a
acc = a
acc
go Nat
bm a
acc = Nat -> a -> a
go (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bitmask) ((Int -> a -> a
f (Int -> a -> a) -> Int -> a -> a
forall a b. (a -> b) -> a -> b
$! (Int
prefixInt -> Int -> Int
forall a. Num a => a -> a -> a
+(WORD_SIZE_IN_BITS-1)-bi)) acc)
where !bitmask :: Nat
bitmask = Nat -> Nat
lowestBitMask Nat
bm
!bi :: Int
bi = Nat -> Int
indexOfTheOnlyBit Nat
bitmask
foldr'Bits :: Int -> (Int -> a -> a) -> a -> Nat -> a
foldr'Bits Int
prefix Int -> a -> a
f a
z Nat
bitmap = Nat -> a -> a
go (Nat -> Nat
revNat Nat
bitmap) a
z
where go :: Nat -> a -> a
go Nat
0 a
acc = a
acc
go Nat
bm !a
acc = Nat -> a -> a
go (Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bitmask) ((Int -> a -> a
f (Int -> a -> a) -> Int -> a -> a
forall a b. (a -> b) -> a -> b
$! (Int
prefixInt -> Int -> Int
forall a. Num a => a -> a -> a
+(WORD_SIZE_IN_BITS-1)-bi)) acc)
where !bitmask :: Nat
bitmask = Nat -> Nat
lowestBitMask Nat
bm
!bi :: Int
bi = Nat -> Int
indexOfTheOnlyBit Nat
bitmask
#else
lowestBitSet n0 =
let (n1,b1) = if n0 .&. 0xFFFFFFFF /= 0 then (n0,0) else (n0 `shiftRL` 32, 32)
(n2,b2) = if n1 .&. 0xFFFF /= 0 then (n1,b1) else (n1 `shiftRL` 16, 16+b1)
(n3,b3) = if n2 .&. 0xFF /= 0 then (n2,b2) else (n2 `shiftRL` 8, 8+b2)
(n4,b4) = if n3 .&. 0xF /= 0 then (n3,b3) else (n3 `shiftRL` 4, 4+b3)
(n5,b5) = if n4 .&. 0x3 /= 0 then (n4,b4) else (n4 `shiftRL` 2, 2+b4)
b6 = if n5 .&. 0x1 /= 0 then b5 else 1+b5
in b6
highestBitSet n0 =
let (n1,b1) = if n0 .&. 0xFFFFFFFF00000000 /= 0 then (n0 `shiftRL` 32, 32) else (n0,0)
(n2,b2) = if n1 .&. 0xFFFF0000 /= 0 then (n1 `shiftRL` 16, 16+b1) else (n1,b1)
(n3,b3) = if n2 .&. 0xFF00 /= 0 then (n2 `shiftRL` 8, 8+b2) else (n2,b2)
(n4,b4) = if n3 .&. 0xF0 /= 0 then (n3 `shiftRL` 4, 4+b3) else (n3,b3)
(n5,b5) = if n4 .&. 0xC /= 0 then (n4 `shiftRL` 2, 2+b4) else (n4,b4)
b6 = if n5 .&. 0x2 /= 0 then 1+b5 else b5
in b6
foldlBits prefix f z bm = let lb = lowestBitSet bm
in go (prefix+lb) z (bm `shiftRL` lb)
where go !_ acc 0 = acc
go bi acc n | n `testBit` 0 = go (bi + 1) (f acc bi) (n `shiftRL` 1)
| otherwise = go (bi + 1) acc (n `shiftRL` 1)
foldl'Bits prefix f z bm = let lb = lowestBitSet bm
in go (prefix+lb) z (bm `shiftRL` lb)
where go !_ !acc 0 = acc
go bi acc n | n `testBit` 0 = go (bi + 1) (f acc bi) (n `shiftRL` 1)
| otherwise = go (bi + 1) acc (n `shiftRL` 1)
foldrBits prefix f z bm = let lb = lowestBitSet bm
in go (prefix+lb) (bm `shiftRL` lb)
where go !_ 0 = z
go bi n | n `testBit` 0 = f bi (go (bi + 1) (n `shiftRL` 1))
| otherwise = go (bi + 1) (n `shiftRL` 1)
foldr'Bits prefix f z bm = let lb = lowestBitSet bm
in go (prefix+lb) (bm `shiftRL` lb)
where
go !_ 0 = z
go bi n | n `testBit` 0 = f bi $! go (bi + 1) (n `shiftRL` 1)
| otherwise = go (bi + 1) (n `shiftRL` 1)
#endif
splitRoot :: IntSet -> [IntSet]
splitRoot :: IntSet -> [IntSet]
splitRoot IntSet
Nil = []
splitRoot x :: IntSet
x@(Tip Int
_ Nat
_) = [IntSet
x]
splitRoot (Bin Int
_ Int
m IntSet
l IntSet
r) | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = [IntSet
r, IntSet
l]
| Bool
otherwise = [IntSet
l, IntSet
r]
{-# INLINE splitRoot #-}