{-# LANGUAGE NoImplicitPrelude, UnicodeSyntax #-}
module Data.Map.Strict.Unicode
( (∈), (∋), (∉), (∌)
, (∅)
, (∪), (∖), (∆), (∩)
) where
import Data.Bool ( Bool )
import Data.Ord ( Ord )
import Data.Function ( flip )
import Data.Map.Strict ( Map
, member, notMember
, empty
, union, difference, intersection
)
infix 4 ∈
infix 4 ∋
infix 4 ∉
infix 4 ∌
infixl 6 ∪
infixr 6 ∩
infixl 9 ∖
infixl 9 ∆
(∈) ∷ Ord k ⇒ k → Map k α → Bool
∈ :: k -> Map k α -> Bool
(∈) = k -> Map k α -> Bool
forall k a. Ord k => k -> Map k a -> Bool
member
{-# INLINE (∈) #-}
(∋) ∷ Ord k ⇒ Map k α → k → Bool
∋ :: Map k α -> k -> Bool
(∋) = (k -> Map k α -> Bool) -> Map k α -> k -> Bool
forall a b c. (a -> b -> c) -> b -> a -> c
flip k -> Map k α -> Bool
forall k a. Ord k => k -> Map k a -> Bool
(∈)
{-# INLINE (∋) #-}
(∉) ∷ Ord k ⇒ k → Map k α → Bool
∉ :: k -> Map k α -> Bool
(∉) = k -> Map k α -> Bool
forall k a. Ord k => k -> Map k a -> Bool
notMember
{-# INLINE (∉) #-}
(∌) ∷ Ord k ⇒ Map k α → k → Bool
∌ :: Map k α -> k -> Bool
(∌) = (k -> Map k α -> Bool) -> Map k α -> k -> Bool
forall a b c. (a -> b -> c) -> b -> a -> c
flip k -> Map k α -> Bool
forall k a. Ord k => k -> Map k a -> Bool
(∉)
{-# INLINE (∌) #-}
(∅) ∷ Map k α
∅ :: Map k α
(∅) = Map k α
forall k a. Map k a
empty
{-# INLINE (∅) #-}
(∪) ∷ Ord k ⇒ Map k α → Map k α → Map k α
∪ :: Map k α -> Map k α -> Map k α
(∪) = Map k α -> Map k α -> Map k α
forall k a. Ord k => Map k a -> Map k a -> Map k a
union
{-# INLINE (∪) #-}
(∖) ∷ Ord k ⇒ Map k α → Map k β → Map k α
∖ :: Map k α -> Map k β -> Map k α
(∖) = Map k α -> Map k β -> Map k α
forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference
{-# INLINE (∖) #-}
(∆) ∷ Ord k ⇒ Map k α → Map k α → Map k α
Map k α
a ∆ :: Map k α -> Map k α -> Map k α
∆ Map k α
b = (Map k α
a Map k α -> Map k α -> Map k α
forall k a b. Ord k => Map k a -> Map k b -> Map k a
∖ Map k α
b) Map k α -> Map k α -> Map k α
forall k a. Ord k => Map k a -> Map k a -> Map k a
∪ (Map k α
b Map k α -> Map k α -> Map k α
forall k a b. Ord k => Map k a -> Map k b -> Map k a
∖ Map k α
a)
{-# INLINE (∆) #-}
(∩) ∷ Ord k ⇒ Map k α → Map k β → Map k α
∩ :: Map k α -> Map k β -> Map k α
(∩) = Map k α -> Map k β -> Map k α
forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection
{-# INLINE (∩) #-}