{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
module Database.CQL.Protocol.Record
( Record (..)
, TupleType
, recordInstance
) where
import Control.Monad
import Language.Haskell.TH
typeSynDecl :: Name -> [Type] -> Type -> Dec
#if __GLASGOW_HASKELL__ < 708
typeSynDecl = TySynInstD
#else
typeSynDecl x y z = TySynInstD x (TySynEqn y z)
#endif
type family TupleType a
class Record a where
asTuple :: a -> TupleType a
asRecord :: TupleType a -> a
recordInstance :: Name -> Q [Dec]
recordInstance n = do
i <- reify n
case i of
TyConI d -> start d
_ -> fail "expecting record type"
start :: Dec -> Q [Dec]
#if MIN_VERSION_template_haskell(2,11,0)
start (DataD _ tname _ _ cons _) = do
#else
start (DataD _ tname _ cons _) = do
#endif
unless (length cons == 1) $
fail "expecting single data constructor"
tt <- tupleType (head cons)
at <- asTupleDecl (head cons)
ar <- asRecrdDecl (head cons)
return
[ typeSynDecl (mkName "TupleType") [ConT tname] tt
#if MIN_VERSION_template_haskell(2,11,0)
, InstanceD Nothing [] (ConT (mkName "Record") $: ConT tname)
#else
, InstanceD [] (ConT (mkName "Record") $: ConT tname)
#endif
[ FunD (mkName "asTuple") [at]
, FunD (mkName "asRecord") [ar]
]
]
start _ = fail "unsupported data type"
tupleType :: Con -> Q Type
tupleType c = do
let tt = types c
return $ foldl1 ($:) (TupleT (length tt) : types c)
where
types (NormalC _ tt) = map snd tt
types (RecC _ tt) = map (\(_, _, t) -> t) tt
types _ = fail "record and normal constructors only"
asTupleDecl ::Con -> Q Clause
asTupleDecl c =
case c of
(NormalC n t) -> go n t
(RecC n t) -> go n t
_ -> fail "record and normal constructors only"
where
go n t = do
vars <- replicateM (length t) (newName "a")
return $ Clause [ConP n (map VarP vars)] (body vars) []
body = NormalB . TupE . map VarE
asRecrdDecl ::Con -> Q Clause
asRecrdDecl c =
case c of
(NormalC n t) -> go n t
(RecC n t) -> go n t
_ -> fail "record and normal constructors only"
where
go n t = do
vars <- replicateM (length t) (newName "a")
return $ Clause [TupP (map VarP vars)] (body n vars) []
body n v = NormalB $ foldl1 ($$) (ConE n : map VarE v)
($$) :: Exp -> Exp -> Exp
($$) = AppE
($:) :: Type -> Type -> Type
($:) = AppT