{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Cryptol.Symbolic.Prims where
import Control.Monad (unless)
import Data.Bits
import qualified Data.Sequence as Seq
import qualified Data.Foldable as Fold
import Cryptol.Eval.Monad (Eval(..), ready, invalidIndex, cryUserError)
import Cryptol.Eval.Type (finNat', TValue(..))
import Cryptol.Eval.Value (BitWord(..), EvalPrims(..), enumerateSeqMap, SeqMap(..),
reverseSeqMap, wlam, nlam, WordValue(..),
asWordVal, fromWordVal, fromBit,
enumerateWordValue, enumerateWordValueRev,
wordValueSize,
updateWordValue,
updateSeqMap, lookupSeqMap, memoMap )
import Cryptol.Prims.Eval (binary, unary, arithUnary,
arithBinary, Binary, BinArith,
logicBinary, logicUnary, zeroV,
ccatV, splitAtV, joinV, ecSplitV,
reverseV, infFromV, infFromThenV,
fromToV, fromThenToV,
transposeV, indexPrim,
ecToIntegerV, ecFromIntegerV,
ecNumberV, updatePrim, randomV, liftWord,
cmpValue, lg2)
import Cryptol.Symbolic.Value
import Cryptol.TypeCheck.AST (Decl(..))
import Cryptol.TypeCheck.Solver.InfNat (Nat'(..), widthInteger)
import Cryptol.ModuleSystem.Name (asPrim)
import Cryptol.Utils.Ident (Ident,mkIdent)
import qualified Data.SBV as SBV
import qualified Data.SBV.Dynamic as SBV
import qualified Data.Map as Map
import qualified Data.Text as T
import Prelude ()
import Prelude.Compat
import Control.Monad (join)
traverseSnd :: Functor f => (a -> f b) -> (t, a) -> f (t, b)
traverseSnd f (x, y) = (,) x <$> f y
instance EvalPrims SBool SWord SInteger where
evalPrim Decl { dName = n, .. } =
do prim <- asPrim n
Map.lookup prim primTable
iteValue b x1 x2
| Just b' <- SBV.svAsBool b = if b' then x1 else x2
| otherwise = do v1 <- x1
v2 <- x2
iteSValue b v1 v2
primTable :: Map.Map Ident Value
primTable = Map.fromList $ map (\(n, v) -> (mkIdent (T.pack n), v))
[ ("True" , VBit SBV.svTrue)
, ("False" , VBit SBV.svFalse)
, ("number" , ecNumberV)
, ("+" , binary (arithBinary (liftBinArith SBV.svPlus) (liftBin SBV.svPlus)
sModAdd))
, ("-" , binary (arithBinary (liftBinArith SBV.svMinus) (liftBin SBV.svMinus)
sModSub))
, ("*" , binary (arithBinary (liftBinArith SBV.svTimes) (liftBin SBV.svTimes)
sModMult))
, ("/" , binary (arithBinary (liftBinArith SBV.svQuot) (liftBin SBV.svQuot)
(liftModBin SBV.svQuot)))
, ("%" , binary (arithBinary (liftBinArith SBV.svRem) (liftBin SBV.svRem)
(liftModBin SBV.svRem)))
, ("^^" , binary (arithBinary sExp (liftBin SBV.svExp)
sModExp))
, ("lg2" , unary (arithUnary sLg2 svLg2 svModLg2))
, ("negate" , unary (arithUnary (\_ -> ready . SBV.svUNeg) (ready . SBV.svUNeg)
(const (ready . SBV.svUNeg))))
, ("<" , binary (cmpBinary cmpLt cmpLt cmpLt (cmpMod cmpLt) SBV.svFalse))
, (">" , binary (cmpBinary cmpGt cmpGt cmpGt (cmpMod cmpGt) SBV.svFalse))
, ("<=" , binary (cmpBinary cmpLtEq cmpLtEq cmpLtEq (cmpMod cmpLtEq) SBV.svTrue))
, (">=" , binary (cmpBinary cmpGtEq cmpGtEq cmpGtEq (cmpMod cmpGtEq) SBV.svTrue))
, ("==" , binary (cmpBinary cmpEq cmpEq cmpEq cmpModEq SBV.svTrue))
, ("!=" , binary (cmpBinary cmpNotEq cmpNotEq cmpNotEq cmpModNotEq SBV.svFalse))
, ("<$" , let boolFail = evalPanic "<$" ["Attempted signed comparison on bare Bit values"]
intFail = evalPanic "<$" ["Attempted signed comparison on Integer values"]
in binary (cmpBinary boolFail cmpSignedLt intFail (const intFail) SBV.svFalse))
, ("/$" , binary (arithBinary (liftBinArith signedQuot) (liftBin SBV.svQuot)
(liftModBin SBV.svQuot)))
, ("%$" , binary (arithBinary (liftBinArith signedRem) (liftBin SBV.svRem)
(liftModBin SBV.svRem)))
, (">>$" , sshrV)
, ("&&" , binary (logicBinary SBV.svAnd SBV.svAnd))
, ("||" , binary (logicBinary SBV.svOr SBV.svOr))
, ("^" , binary (logicBinary SBV.svXOr SBV.svXOr))
, ("complement" , unary (logicUnary SBV.svNot SBV.svNot))
, ("zero" , tlam zeroV)
, ("toInteger" , ecToIntegerV)
, ("fromInteger" , ecFromIntegerV (const id))
, ("fromZ" , nlam $ \ modulus ->
lam $ \ x -> do
val <- x
case (modulus, val) of
(Nat n, VInteger i) -> return $ VInteger (SBV.svRem i (integerLit n))
_ -> evalPanic "fromZ" ["Invalid arguments"])
, ("<<" , logicShift "<<"
SBV.svShiftLeft
(\sz i shft ->
case sz of
Inf -> Just (i+shft)
Nat n
| i+shft >= n -> Nothing
| otherwise -> Just (i+shft)))
, (">>" , logicShift ">>"
SBV.svShiftRight
(\_sz i shft ->
if i-shft < 0 then Nothing else Just (i-shft)))
, ("<<<" , logicShift "<<<"
SBV.svRotateLeft
(\sz i shft ->
case sz of
Inf -> evalPanic "cannot rotate infinite sequence" []
Nat n -> Just ((i+shft) `mod` n)))
, (">>>" , logicShift ">>>"
SBV.svRotateRight
(\sz i shft ->
case sz of
Inf -> evalPanic "cannot rotate infinite sequence" []
Nat n -> Just ((i+n-shft) `mod` n)))
, ("carry" , liftWord carry)
, ("scarry" , liftWord scarry)
, ("#" ,
nlam $ \ front ->
nlam $ \ back ->
tlam $ \ elty ->
lam $ \ l -> return $
lam $ \ r -> join (ccatV front back elty <$> l <*> r))
, ("splitAt" ,
nlam $ \ front ->
nlam $ \ back ->
tlam $ \ a ->
lam $ \ x ->
splitAtV front back a =<< x)
, ("join" ,
nlam $ \ parts ->
nlam $ \ (finNat' -> each) ->
tlam $ \ a ->
lam $ \ x ->
joinV parts each a =<< x)
, ("split" , ecSplitV)
, ("reverse" , nlam $ \_a ->
tlam $ \_b ->
lam $ \xs -> reverseV =<< xs)
, ("transpose" , nlam $ \a ->
nlam $ \b ->
tlam $ \c ->
lam $ \xs -> transposeV a b c =<< xs)
, ("fromTo" , fromToV)
, ("fromThenTo" , fromThenToV)
, ("infFrom" , infFromV)
, ("infFromThen" , infFromThenV)
, ("@" , indexPrim indexFront_bits indexFront)
, ("!" , indexPrim indexBack_bits indexBack)
, ("update" , updatePrim updateFrontSym_word updateFrontSym)
, ("updateEnd" , updatePrim updateBackSym_word updateBackSym)
, ("error" ,
tlam $ \at ->
nlam $ \(finNat' -> _len) ->
VFun $ \_msg ->
return $ zeroV at)
, ("random" ,
tlam $ \a ->
wlam $ \x ->
case SBV.svAsInteger x of
Just i -> return $ randomV a i
Nothing -> cryUserError "cannot evaluate 'random' with symbolic inputs")
, ("trace",
nlam $ \_n ->
tlam $ \_a ->
tlam $ \_b ->
lam $ \s -> return $
lam $ \x -> return $
lam $ \y -> do
_ <- s
_ <- x
y)
]
shifter :: Monad m => (SBool -> a -> a -> a) -> (a -> Integer -> m a) -> a -> [SBool] -> m a
shifter mux op = go
where
go x [] = return x
go x (b : bs) = do
x' <- op x (2 ^ length bs)
go (mux b x' x) bs
logicShift :: String
-> (SWord -> SWord -> SWord)
-> (Nat' -> Integer -> Integer -> Maybe Integer)
-> Value
logicShift nm wop reindex =
nlam $ \_m ->
nlam $ \_n ->
tlam $ \a ->
VFun $ \xs -> return $
VFun $ \y -> do
idx <- fromWordVal "logicShift" =<< y
xs >>= \case
VWord w x ->
return $ VWord w $ do
x >>= \case
WordVal x' -> WordVal . wop x' <$> asWordVal idx
BitsVal bs0 ->
do idx_bits <- enumerateWordValue idx
let op bs shft = return $ Seq.fromFunction (Seq.length bs) $ \i ->
case reindex (Nat w) (toInteger i) shft of
Nothing -> return $ bitLit False
Just i' -> Seq.index bs (fromInteger i')
BitsVal <$> shifter (mergeBits True) op bs0 idx_bits
LargeBitsVal n bs0 ->
do idx_bits <- enumerateWordValue idx
let op bs shft = memoMap $ IndexSeqMap $ \i ->
case reindex (Nat w) i shft of
Nothing -> return $ VBit $ bitLit False
Just i' -> lookupSeqMap bs i'
LargeBitsVal n <$> shifter (mergeSeqMap True) op bs0 idx_bits
VSeq w vs0 ->
do idx_bits <- enumerateWordValue idx
let op vs shft = memoMap $ IndexSeqMap $ \i ->
case reindex (Nat w) i shft of
Nothing -> return $ zeroV a
Just i' -> lookupSeqMap vs i'
VSeq w <$> shifter (mergeSeqMap True) op vs0 idx_bits
VStream vs0 ->
do idx_bits <- enumerateWordValue idx
let op vs shft = memoMap $ IndexSeqMap $ \i ->
case reindex Inf i shft of
Nothing -> return $ zeroV a
Just i' -> lookupSeqMap vs i'
VStream <$> shifter (mergeSeqMap True) op vs0 idx_bits
_ -> evalPanic "expected sequence value in shift operation" [nm]
indexFront :: Maybe Integer
-> TValue
-> SeqMap SBool SWord SInteger
-> SWord
-> Eval Value
indexFront mblen a xs idx
| Just i <- SBV.svAsInteger idx
= lookupSeqMap xs i
| Just n <- mblen
, TVSeq wlen TVBit <- a
= do wvs <- traverse (fromWordVal "indexFront" =<<) (enumerateSeqMap n xs)
case asWordList wvs of
Just ws ->
return $ VWord wlen $ ready $ WordVal $ SBV.svSelect ws (wordLit wlen 0) idx
Nothing -> foldr f def idxs
| otherwise
= foldr f def idxs
where
k = SBV.kindOf idx
w = SBV.intSizeOf idx
def = ready $ zeroV a
f n y = iteValue (SBV.svEqual idx (SBV.svInteger k n)) (lookupSeqMap xs n) y
idxs = case mblen of
Just n | n < 2^w -> [0 .. n-1]
_ -> [0 .. 2^w - 1]
indexBack :: Maybe Integer
-> TValue
-> SeqMap SBool SWord SInteger
-> SWord
-> Eval Value
indexBack (Just n) a xs idx = indexFront (Just n) a (reverseSeqMap n xs) idx
indexBack Nothing _ _ _ = evalPanic "Expected finite sequence" ["indexBack"]
indexFront_bits :: Maybe Integer
-> TValue
-> SeqMap SBool SWord SInteger
-> Seq.Seq SBool
-> Eval Value
indexFront_bits mblen a xs bits0 = go 0 (length bits0) (Fold.toList bits0)
where
go :: Integer -> Int -> [SBool] -> Eval Value
go i _k []
| Just n <- mblen
, i >= n
= return $ zeroV a
| otherwise
= lookupSeqMap xs i
go i k (b:bs)
| Just n <- mblen
, (i `shiftL` k) >= n
= return $ zeroV a
| otherwise
= iteValue b (go ((i `shiftL` 1) + 1) (k-1) bs)
(go (i `shiftL` 1) (k-1) bs)
indexBack_bits :: Maybe Integer
-> TValue
-> SeqMap SBool SWord SInteger
-> Seq.Seq SBool
-> Eval Value
indexBack_bits (Just n) a xs idx = indexFront_bits (Just n) a (reverseSeqMap n xs) idx
indexBack_bits Nothing _ _ _ = evalPanic "Expected finite sequence" ["indexBack_bits"]
wordValueEqualsInteger :: WordValue SBool SWord SInteger -> Integer -> Eval SBool
wordValueEqualsInteger wv i
| wordValueSize wv < widthInteger i = return SBV.svFalse
| otherwise =
case wv of
WordVal w -> return $ SBV.svEqual w (literalSWord (SBV.intSizeOf w) i)
_ -> bitsAre i <$> enumerateWordValueRev wv
where
bitsAre :: Integer -> [SBool] -> SBool
bitsAre n [] = SBV.svBool (n == 0)
bitsAre n (b : bs) = SBV.svAnd (bitIs (odd n) b) (bitsAre (n `div` 2) bs)
bitIs :: Bool -> SBool -> SBool
bitIs b x = if b then x else SBV.svNot x
lazyMergeBit :: SBool -> Eval SBool -> Eval SBool -> Eval SBool
lazyMergeBit c x y =
case SBV.svAsBool c of
Just True -> x
Just False -> y
Nothing -> mergeBit False c <$> x <*> y
updateFrontSym
:: Nat'
-> TValue
-> SeqMap SBool SWord SInteger
-> WordValue SBool SWord SInteger
-> Eval (GenValue SBool SWord SInteger)
-> Eval (SeqMap SBool SWord SInteger)
updateFrontSym len _eltTy vs wv val =
case wv of
WordVal w | Just j <- SBV.svAsInteger w ->
do case len of
Inf -> return ()
Nat n -> unless (j < n) (invalidIndex j)
return $ updateSeqMap vs j val
_ ->
return $ IndexSeqMap $ \i ->
do b <- wordValueEqualsInteger wv i
iteValue b val (lookupSeqMap vs i)
updateFrontSym_word
:: Nat'
-> TValue
-> WordValue SBool SWord SInteger
-> WordValue SBool SWord SInteger
-> Eval (GenValue SBool SWord SInteger)
-> Eval (WordValue SBool SWord SInteger)
updateFrontSym_word Inf _ _ _ _ = evalPanic "Expected finite sequence" ["updateFrontSym_bits"]
updateFrontSym_word (Nat n) eltTy bv wv val =
case wv of
WordVal w | Just j <- SBV.svAsInteger w ->
do unless (j < n) (invalidIndex j)
updateWordValue bv j (fromVBit <$> val)
_ ->
case bv of
WordVal bw -> return $ BitsVal $ Seq.mapWithIndex f bs
where bs = fmap return $ Seq.fromList $ unpackWord bw
BitsVal bs -> return $ BitsVal $ Seq.mapWithIndex f bs
LargeBitsVal l vs -> LargeBitsVal l <$> updateFrontSym (Nat n) eltTy vs wv val
where
f :: Int -> Eval SBool -> Eval SBool
f i x = do c <- wordValueEqualsInteger wv (toInteger i)
lazyMergeBit c (fromBit =<< val) x
updateBackSym
:: Nat'
-> TValue
-> SeqMap SBool SWord SInteger
-> WordValue SBool SWord SInteger
-> Eval (GenValue SBool SWord SInteger)
-> Eval (SeqMap SBool SWord SInteger)
updateBackSym Inf _ _ _ _ = evalPanic "Expected finite sequence" ["updateBackSym"]
updateBackSym (Nat n) _eltTy vs wv val =
case wv of
WordVal w | Just j <- SBV.svAsInteger w ->
do unless (j < n) (invalidIndex j)
return $ updateSeqMap vs (n - 1 - j) val
_ ->
return $ IndexSeqMap $ \i ->
do b <- wordValueEqualsInteger wv (n - 1 - i)
iteValue b val (lookupSeqMap vs i)
updateBackSym_word
:: Nat'
-> TValue
-> WordValue SBool SWord SInteger
-> WordValue SBool SWord SInteger
-> Eval (GenValue SBool SWord SInteger)
-> Eval (WordValue SBool SWord SInteger)
updateBackSym_word Inf _ _ _ _ = evalPanic "Expected finite sequence" ["updateBackSym_bits"]
updateBackSym_word (Nat n) eltTy bv wv val = do
case wv of
WordVal w | Just j <- SBV.svAsInteger w ->
do unless (j < n) (invalidIndex j)
updateWordValue bv (n - 1 - j) (fromVBit <$> val)
_ ->
case bv of
WordVal bw -> return $ BitsVal $ Seq.mapWithIndex f bs
where bs = fmap return $ Seq.fromList $ unpackWord bw
BitsVal bs -> return $ BitsVal $ Seq.mapWithIndex f bs
LargeBitsVal l vs -> LargeBitsVal l <$> updateBackSym (Nat n) eltTy vs wv val
where
f :: Int -> Eval SBool -> Eval SBool
f i x = do c <- wordValueEqualsInteger wv (n - 1 - toInteger i)
lazyMergeBit c (fromBit =<< val) x
asBitList :: [Eval SBool] -> Maybe [SBool]
asBitList = go id
where go :: ([SBool] -> [SBool]) -> [Eval SBool] -> Maybe [SBool]
go f [] = Just (f [])
go f (Ready b:vs) = go (f . (b:)) vs
go _ _ = Nothing
asWordList :: [WordValue SBool SWord SInteger] -> Maybe [SWord]
asWordList = go id
where go :: ([SWord] -> [SWord]) -> [WordValue SBool SWord SInteger] -> Maybe [SWord]
go f [] = Just (f [])
go f (WordVal x :vs) = go (f . (x:)) vs
go f (BitsVal bs:vs) =
case asBitList (Fold.toList bs) of
Just xs -> go (f . (packWord xs:)) vs
Nothing -> Nothing
go _f (LargeBitsVal _ _ : _) = Nothing
liftBinArith :: (SWord -> SWord -> SWord) -> BinArith SWord
liftBinArith op _ x y = ready $ op x y
liftBin :: (a -> b -> c) -> a -> b -> Eval c
liftBin op x y = ready $ op x y
liftModBin :: (SInteger -> SInteger -> a) -> Integer -> SInteger -> SInteger -> Eval a
liftModBin op modulus x y = ready $ op (SBV.svRem x m) (SBV.svRem y m)
where m = integerLit modulus
sExp :: Integer -> SWord -> SWord -> Eval SWord
sExp _w x y = ready $ go (reverse (unpackWord y))
where go [] = literalSWord (SBV.intSizeOf x) 1
go (b : bs) = SBV.svIte b (SBV.svTimes x s) s
where a = go bs
s = SBV.svTimes a a
sModAdd :: Integer -> SInteger -> SInteger -> Eval SInteger
sModAdd modulus x y =
case (SBV.svAsInteger x, SBV.svAsInteger y) of
(Just i, Just j) -> ready $ integerLit ((i + j) `mod` modulus)
_ -> ready $ SBV.svPlus x y
sModSub :: Integer -> SInteger -> SInteger -> Eval SInteger
sModSub modulus x y =
case (SBV.svAsInteger x, SBV.svAsInteger y) of
(Just i, Just j) -> ready $ integerLit ((i - j) `mod` modulus)
_ -> ready $ SBV.svMinus x y
sModMult :: Integer -> SInteger -> SInteger -> Eval SInteger
sModMult modulus x y =
case (SBV.svAsInteger x, SBV.svAsInteger y) of
(Just i, Just j) -> ready $ integerLit ((i * j) `mod` modulus)
_ -> ready $ SBV.svTimes x y
sModExp :: Integer -> SInteger -> SInteger -> Eval SInteger
sModExp modulus x y = ready $ SBV.svExp x (SBV.svRem y m)
where m = integerLit modulus
sLg2 :: Integer -> SWord -> Eval SWord
sLg2 _w x = ready $ go 0
where
lit n = literalSWord (SBV.intSizeOf x) n
go i | i < SBV.intSizeOf x = SBV.svIte (SBV.svLessEq x (lit (2^i))) (lit (toInteger i)) (go (i + 1))
| otherwise = lit (toInteger i)
svLg2 :: SInteger -> Eval SInteger
svLg2 x =
case SBV.svAsInteger x of
Just n -> ready $ SBV.svInteger SBV.KUnbounded (lg2 n)
Nothing -> evalPanic "cannot compute lg2 of symbolic unbounded integer" []
svModLg2 :: Integer -> SInteger -> Eval SInteger
svModLg2 modulus x = svLg2 (SBV.svRem x m)
where m = integerLit modulus
cmpEq :: SWord -> SWord -> Eval SBool -> Eval SBool
cmpEq x y k = SBV.svAnd (SBV.svEqual x y) <$> k
cmpNotEq :: SWord -> SWord -> Eval SBool -> Eval SBool
cmpNotEq x y k = SBV.svOr (SBV.svNotEqual x y) <$> k
cmpSignedLt :: SWord -> SWord -> Eval SBool -> Eval SBool
cmpSignedLt x y k = SBV.svOr (SBV.svLessThan sx sy) <$> (cmpEq sx sy k)
where sx = SBV.svSign x
sy = SBV.svSign y
cmpLt, cmpGt :: SWord -> SWord -> Eval SBool -> Eval SBool
cmpLt x y k = SBV.svOr (SBV.svLessThan x y) <$> (cmpEq x y k)
cmpGt x y k = SBV.svOr (SBV.svGreaterThan x y) <$> (cmpEq x y k)
cmpLtEq, cmpGtEq :: SWord -> SWord -> Eval SBool -> Eval SBool
cmpLtEq x y k = SBV.svAnd (SBV.svLessEq x y) <$> (cmpNotEq x y k)
cmpGtEq x y k = SBV.svAnd (SBV.svGreaterEq x y) <$> (cmpNotEq x y k)
cmpMod ::
(SInteger -> SInteger -> Eval SBool -> Eval SBool) ->
(Integer -> SInteger -> SInteger -> Eval SBool -> Eval SBool)
cmpMod cmp modulus x y k = cmp (SBV.svRem x m) (SBV.svRem y m) k
where m = integerLit modulus
cmpModEq :: Integer -> SInteger -> SInteger -> Eval SBool -> Eval SBool
cmpModEq m x y k = SBV.svAnd (svDivisible m (SBV.svMinus x y)) <$> k
cmpModNotEq :: Integer -> SInteger -> SInteger -> Eval SBool -> Eval SBool
cmpModNotEq m x y k = SBV.svOr (SBV.svNot (svDivisible m (SBV.svMinus x y))) <$> k
svDivisible :: Integer -> SInteger -> SBool
svDivisible m x = SBV.svEqual (SBV.svRem x (integerLit m)) (integerLit 0)
cmpBinary :: (SBool -> SBool -> Eval SBool -> Eval SBool)
-> (SWord -> SWord -> Eval SBool -> Eval SBool)
-> (SInteger -> SInteger -> Eval SBool -> Eval SBool)
-> (Integer -> SInteger -> SInteger -> Eval SBool -> Eval SBool)
-> SBool -> Binary SBool SWord SInteger
cmpBinary fb fw fi fz b ty v1 v2 = VBit <$> cmpValue fb fw fi fz ty v1 v2 (return b)
signedQuot :: SWord -> SWord -> SWord
signedQuot x y = SBV.svUnsign (SBV.svQuot (SBV.svSign x) (SBV.svSign y))
signedRem :: SWord -> SWord -> SWord
signedRem x y = SBV.svUnsign (SBV.svRem (SBV.svSign x) (SBV.svSign y))
sshrV :: Value
sshrV =
nlam $ \_n ->
nlam $ \_k ->
wlam $ \x -> return $
wlam $ \y ->
case SBV.svAsInteger y of
Just i ->
let z = SBV.svUnsign (SBV.svShr (SBV.svSign x) (fromInteger i))
in return . VWord (toInteger (SBV.intSizeOf x)) . ready . WordVal $ z
Nothing ->
let z = SBV.svUnsign (SBV.svShiftRight (SBV.svSign x) y)
in return . VWord (toInteger (SBV.intSizeOf x)) . ready . WordVal $ z
carry :: SWord -> SWord -> Eval Value
carry x y = return $ VBit c
where
c = SBV.svLessThan (SBV.svPlus x y) x
scarry :: SWord -> SWord -> Eval Value
scarry x y = return $ VBit sc
where
n = SBV.intSizeOf x
z = SBV.svPlus (SBV.svSign x) (SBV.svSign y)
xsign = SBV.svTestBit x (n-1)
ysign = SBV.svTestBit y (n-1)
zsign = SBV.svTestBit z (n-1)
sc = SBV.svAnd (SBV.svEqual xsign ysign) (SBV.svNotEqual xsign zsign)