cryptonite-0.21: Cryptography Primitives sink

LicenseBSD-style
MaintainerVincent Hanquez <vincent@snarc.org>
Stabilityexperimental
PortabilityGood
Safe HaskellNone
LanguageHaskell2010

Crypto.PubKey.RSA

Contents

Description

 

Synopsis

Documentation

data Error Source #

error possible during encryption, decryption or signing.

Constructors

MessageSizeIncorrect

the message to decrypt is not of the correct size (need to be == private_size)

MessageTooLong

the message to encrypt is too long

MessageNotRecognized

the message decrypted doesn't have a PKCS15 structure (0 2 .. 0 msg)

SignatureTooLong

the message's digest is too long

InvalidParameters

some parameters lead to breaking assumptions.

Instances

Eq Error Source # 

Methods

(==) :: Error -> Error -> Bool #

(/=) :: Error -> Error -> Bool #

Show Error Source # 

Methods

showsPrec :: Int -> Error -> ShowS #

show :: Error -> String #

showList :: [Error] -> ShowS #

data PublicKey Source #

Represent a RSA public key

Constructors

PublicKey 

Fields

Instances

Eq PublicKey Source # 
Data PublicKey Source # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PublicKey -> c PublicKey #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PublicKey #

toConstr :: PublicKey -> Constr #

dataTypeOf :: PublicKey -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c PublicKey) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PublicKey) #

gmapT :: (forall b. Data b => b -> b) -> PublicKey -> PublicKey #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PublicKey -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PublicKey -> r #

gmapQ :: (forall d. Data d => d -> u) -> PublicKey -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PublicKey -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PublicKey -> m PublicKey #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PublicKey -> m PublicKey #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PublicKey -> m PublicKey #

Read PublicKey Source # 
Show PublicKey Source # 
NFData PublicKey Source # 

Methods

rnf :: PublicKey -> () #

data PrivateKey Source #

Represent a RSA private key.

Only the pub, d fields are mandatory to fill.

p, q, dP, dQ, qinv are by-product during RSA generation, but are useful to record here to speed up massively the decrypt and sign operation.

implementations can leave optional fields to 0.

Constructors

PrivateKey 

Fields

Instances

Eq PrivateKey Source # 
Data PrivateKey Source # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PrivateKey -> c PrivateKey #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PrivateKey #

toConstr :: PrivateKey -> Constr #

dataTypeOf :: PrivateKey -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c PrivateKey) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PrivateKey) #

gmapT :: (forall b. Data b => b -> b) -> PrivateKey -> PrivateKey #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PrivateKey -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PrivateKey -> r #

gmapQ :: (forall d. Data d => d -> u) -> PrivateKey -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PrivateKey -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PrivateKey -> m PrivateKey #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PrivateKey -> m PrivateKey #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PrivateKey -> m PrivateKey #

Read PrivateKey Source # 
Show PrivateKey Source # 
NFData PrivateKey Source # 

Methods

rnf :: PrivateKey -> () #

data Blinder Source #

Blinder which is used to obfuscate the timing of the decryption primitive (used by decryption and signing).

Constructors

Blinder !Integer !Integer 

generation function

generateWith Source #

Arguments

:: (Integer, Integer)

chosen distinct primes p and q

-> Int

size in bytes

-> Integer

RSA public exponant e

-> Maybe (PublicKey, PrivateKey) 

Generate a key pair given p and q.

p and q need to be distinct prime numbers.

e need to be coprime to phi=(p-1)*(q-1). If that's not the case, the function will not return a key pair. A small hamming weight results in better performance.

  • e=0x10001 is a popular choice
  • e=3 is popular as well, but proven to not be as secure for some cases.

generate Source #

Arguments

:: MonadRandom m 
=> Int

size in bytes

-> Integer

RSA public exponant e

-> m (PublicKey, PrivateKey) 

generate a pair of (private, public) key of size in bytes.

generateBlinder Source #

Arguments

:: MonadRandom m 
=> Integer

RSA public N parameter.

-> m Blinder 

Generate a blinder to use with decryption and signing operation

the unique parameter apart from the random number generator is the public key value N.