cryptonite-0.28: Cryptography Primitives sink
LicenseBSD-style
MaintainerCarlos Rodriguez-Vega <crodveg@yahoo.es>
Stabilityexperimental
Portabilityunknown
Safe HaskellNone
LanguageHaskell2010

Crypto.PubKey.Rabin.Modified

Description

Modified-Rabin public-key digital signature algorithm. See algorithm 11.30 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.

Synopsis

Documentation

data PublicKey Source #

Represent a Modified-Rabin public key.

Constructors

PublicKey 

Fields

Instances

Instances details
Eq PublicKey Source # 
Instance details

Defined in Crypto.PubKey.Rabin.Modified

Data PublicKey Source # 
Instance details

Defined in Crypto.PubKey.Rabin.Modified

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PublicKey -> c PublicKey #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PublicKey #

toConstr :: PublicKey -> Constr #

dataTypeOf :: PublicKey -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PublicKey) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PublicKey) #

gmapT :: (forall b. Data b => b -> b) -> PublicKey -> PublicKey #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PublicKey -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PublicKey -> r #

gmapQ :: (forall d. Data d => d -> u) -> PublicKey -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PublicKey -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PublicKey -> m PublicKey #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PublicKey -> m PublicKey #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PublicKey -> m PublicKey #

Read PublicKey Source # 
Instance details

Defined in Crypto.PubKey.Rabin.Modified

Show PublicKey Source # 
Instance details

Defined in Crypto.PubKey.Rabin.Modified

data PrivateKey Source #

Represent a Modified-Rabin private key.

Constructors

PrivateKey 

Fields

Instances

Instances details
Eq PrivateKey Source # 
Instance details

Defined in Crypto.PubKey.Rabin.Modified

Data PrivateKey Source # 
Instance details

Defined in Crypto.PubKey.Rabin.Modified

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PrivateKey -> c PrivateKey #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PrivateKey #

toConstr :: PrivateKey -> Constr #

dataTypeOf :: PrivateKey -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PrivateKey) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PrivateKey) #

gmapT :: (forall b. Data b => b -> b) -> PrivateKey -> PrivateKey #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PrivateKey -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PrivateKey -> r #

gmapQ :: (forall d. Data d => d -> u) -> PrivateKey -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> PrivateKey -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> PrivateKey -> m PrivateKey #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PrivateKey -> m PrivateKey #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PrivateKey -> m PrivateKey #

Read PrivateKey Source # 
Instance details

Defined in Crypto.PubKey.Rabin.Modified

Show PrivateKey Source # 
Instance details

Defined in Crypto.PubKey.Rabin.Modified

generate :: MonadRandom m => Int -> m (PublicKey, PrivateKey) Source #

Generate a pair of (private, public) key of size in bytes. Prime p is congruent 3 mod 8 and prime q is congruent 7 mod 8.

sign Source #

Arguments

:: HashAlgorithm hash 
=> PrivateKey

private key

-> hash

hash function

-> ByteString

message to sign

-> Either Error Integer 

Sign message using hash algorithm and private key.

verify Source #

Arguments

:: HashAlgorithm hash 
=> PublicKey

public key

-> hash

hash function

-> ByteString

message

-> Integer

signature

-> Bool 

Verify signature using hash algorithm and public key.