cubicbezier-0.6.0.6: Efficient manipulating of 2D cubic bezier curves.

Safe HaskellNone
LanguageHaskell98

Geom2D.CubicBezier.Basic

Synopsis

Documentation

data CubicBezier a Source #

A cubic bezier curve.

Constructors

CubicBezier 

Fields

Instances
Functor CubicBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fmap :: (a -> b) -> CubicBezier a -> CubicBezier b #

(<$) :: a -> CubicBezier b -> CubicBezier a #

Foldable CubicBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fold :: Monoid m => CubicBezier m -> m #

foldMap :: Monoid m => (a -> m) -> CubicBezier a -> m #

foldr :: (a -> b -> b) -> b -> CubicBezier a -> b #

foldr' :: (a -> b -> b) -> b -> CubicBezier a -> b #

foldl :: (b -> a -> b) -> b -> CubicBezier a -> b #

foldl' :: (b -> a -> b) -> b -> CubicBezier a -> b #

foldr1 :: (a -> a -> a) -> CubicBezier a -> a #

foldl1 :: (a -> a -> a) -> CubicBezier a -> a #

toList :: CubicBezier a -> [a] #

null :: CubicBezier a -> Bool #

length :: CubicBezier a -> Int #

elem :: Eq a => a -> CubicBezier a -> Bool #

maximum :: Ord a => CubicBezier a -> a #

minimum :: Ord a => CubicBezier a -> a #

sum :: Num a => CubicBezier a -> a #

product :: Num a => CubicBezier a -> a #

Traversable CubicBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

traverse :: Applicative f => (a -> f b) -> CubicBezier a -> f (CubicBezier b) #

sequenceA :: Applicative f => CubicBezier (f a) -> f (CubicBezier a) #

mapM :: Monad m => (a -> m b) -> CubicBezier a -> m (CubicBezier b) #

sequence :: Monad m => CubicBezier (m a) -> m (CubicBezier a) #

GenericBezier CubicBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Eq a => Eq (CubicBezier a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Show a => Show (CubicBezier a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Num a => AffineTransform (CubicBezier a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

data QuadBezier a Source #

A quadratic bezier curve.

Constructors

QuadBezier 

Fields

Instances
Functor QuadBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fmap :: (a -> b) -> QuadBezier a -> QuadBezier b #

(<$) :: a -> QuadBezier b -> QuadBezier a #

Foldable QuadBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fold :: Monoid m => QuadBezier m -> m #

foldMap :: Monoid m => (a -> m) -> QuadBezier a -> m #

foldr :: (a -> b -> b) -> b -> QuadBezier a -> b #

foldr' :: (a -> b -> b) -> b -> QuadBezier a -> b #

foldl :: (b -> a -> b) -> b -> QuadBezier a -> b #

foldl' :: (b -> a -> b) -> b -> QuadBezier a -> b #

foldr1 :: (a -> a -> a) -> QuadBezier a -> a #

foldl1 :: (a -> a -> a) -> QuadBezier a -> a #

toList :: QuadBezier a -> [a] #

null :: QuadBezier a -> Bool #

length :: QuadBezier a -> Int #

elem :: Eq a => a -> QuadBezier a -> Bool #

maximum :: Ord a => QuadBezier a -> a #

minimum :: Ord a => QuadBezier a -> a #

sum :: Num a => QuadBezier a -> a #

product :: Num a => QuadBezier a -> a #

Traversable QuadBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

traverse :: Applicative f => (a -> f b) -> QuadBezier a -> f (QuadBezier b) #

sequenceA :: Applicative f => QuadBezier (f a) -> f (QuadBezier a) #

mapM :: Monad m => (a -> m b) -> QuadBezier a -> m (QuadBezier b) #

sequence :: Monad m => QuadBezier (m a) -> m (QuadBezier a) #

GenericBezier QuadBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

degree :: Unbox a => QuadBezier a -> Int Source #

toVector :: Unbox a => QuadBezier a -> Vector (a, a) Source #

unsafeFromVector :: Unbox a => Vector (a, a) -> QuadBezier a Source #

Eq a => Eq (QuadBezier a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

(==) :: QuadBezier a -> QuadBezier a -> Bool #

(/=) :: QuadBezier a -> QuadBezier a -> Bool #

Show a => Show (QuadBezier a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Num a => AffineTransform (QuadBezier a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

data AnyBezier a Source #

A bezier curve of any degree.

Constructors

AnyBezier (Vector (a, a)) 
Instances
GenericBezier AnyBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

degree :: Unbox a => AnyBezier a -> Int Source #

toVector :: Unbox a => AnyBezier a -> Vector (a, a) Source #

unsafeFromVector :: Unbox a => Vector (a, a) -> AnyBezier a Source #

class GenericBezier b where Source #

Methods

degree :: Unbox a => b a -> Int Source #

toVector :: Unbox a => b a -> Vector (a, a) Source #

unsafeFromVector :: Unbox a => Vector (a, a) -> b a Source #

Instances
GenericBezier AnyBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

degree :: Unbox a => AnyBezier a -> Int Source #

toVector :: Unbox a => AnyBezier a -> Vector (a, a) Source #

unsafeFromVector :: Unbox a => Vector (a, a) -> AnyBezier a Source #

GenericBezier QuadBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

degree :: Unbox a => QuadBezier a -> Int Source #

toVector :: Unbox a => QuadBezier a -> Vector (a, a) Source #

unsafeFromVector :: Unbox a => Vector (a, a) -> QuadBezier a Source #

GenericBezier CubicBezier Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

data PathJoin a Source #

Constructors

JoinLine 
JoinCurve (Point a) (Point a) 
Instances
Functor PathJoin Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fmap :: (a -> b) -> PathJoin a -> PathJoin b #

(<$) :: a -> PathJoin b -> PathJoin a #

Foldable PathJoin Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fold :: Monoid m => PathJoin m -> m #

foldMap :: Monoid m => (a -> m) -> PathJoin a -> m #

foldr :: (a -> b -> b) -> b -> PathJoin a -> b #

foldr' :: (a -> b -> b) -> b -> PathJoin a -> b #

foldl :: (b -> a -> b) -> b -> PathJoin a -> b #

foldl' :: (b -> a -> b) -> b -> PathJoin a -> b #

foldr1 :: (a -> a -> a) -> PathJoin a -> a #

foldl1 :: (a -> a -> a) -> PathJoin a -> a #

toList :: PathJoin a -> [a] #

null :: PathJoin a -> Bool #

length :: PathJoin a -> Int #

elem :: Eq a => a -> PathJoin a -> Bool #

maximum :: Ord a => PathJoin a -> a #

minimum :: Ord a => PathJoin a -> a #

sum :: Num a => PathJoin a -> a #

product :: Num a => PathJoin a -> a #

Traversable PathJoin Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

traverse :: Applicative f => (a -> f b) -> PathJoin a -> f (PathJoin b) #

sequenceA :: Applicative f => PathJoin (f a) -> f (PathJoin a) #

mapM :: Monad m => (a -> m b) -> PathJoin a -> m (PathJoin b) #

sequence :: Monad m => PathJoin (m a) -> m (PathJoin a) #

Show a => Show (PathJoin a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

showsPrec :: Int -> PathJoin a -> ShowS #

show :: PathJoin a -> String #

showList :: [PathJoin a] -> ShowS #

Num a => AffineTransform (PathJoin a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

data ClosedPath a Source #

Constructors

ClosedPath [(Point a, PathJoin a)] 
Instances
Functor ClosedPath Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fmap :: (a -> b) -> ClosedPath a -> ClosedPath b #

(<$) :: a -> ClosedPath b -> ClosedPath a #

Foldable ClosedPath Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fold :: Monoid m => ClosedPath m -> m #

foldMap :: Monoid m => (a -> m) -> ClosedPath a -> m #

foldr :: (a -> b -> b) -> b -> ClosedPath a -> b #

foldr' :: (a -> b -> b) -> b -> ClosedPath a -> b #

foldl :: (b -> a -> b) -> b -> ClosedPath a -> b #

foldl' :: (b -> a -> b) -> b -> ClosedPath a -> b #

foldr1 :: (a -> a -> a) -> ClosedPath a -> a #

foldl1 :: (a -> a -> a) -> ClosedPath a -> a #

toList :: ClosedPath a -> [a] #

null :: ClosedPath a -> Bool #

length :: ClosedPath a -> Int #

elem :: Eq a => a -> ClosedPath a -> Bool #

maximum :: Ord a => ClosedPath a -> a #

minimum :: Ord a => ClosedPath a -> a #

sum :: Num a => ClosedPath a -> a #

product :: Num a => ClosedPath a -> a #

Traversable ClosedPath Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

traverse :: Applicative f => (a -> f b) -> ClosedPath a -> f (ClosedPath b) #

sequenceA :: Applicative f => ClosedPath (f a) -> f (ClosedPath a) #

mapM :: Monad m => (a -> m b) -> ClosedPath a -> m (ClosedPath b) #

sequence :: Monad m => ClosedPath (m a) -> m (ClosedPath a) #

Show a => Show (ClosedPath a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Num a => AffineTransform (ClosedPath a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

data OpenPath a Source #

Constructors

OpenPath [(Point a, PathJoin a)] (Point a) 
Instances
Functor OpenPath Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fmap :: (a -> b) -> OpenPath a -> OpenPath b #

(<$) :: a -> OpenPath b -> OpenPath a #

Foldable OpenPath Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

fold :: Monoid m => OpenPath m -> m #

foldMap :: Monoid m => (a -> m) -> OpenPath a -> m #

foldr :: (a -> b -> b) -> b -> OpenPath a -> b #

foldr' :: (a -> b -> b) -> b -> OpenPath a -> b #

foldl :: (b -> a -> b) -> b -> OpenPath a -> b #

foldl' :: (b -> a -> b) -> b -> OpenPath a -> b #

foldr1 :: (a -> a -> a) -> OpenPath a -> a #

foldl1 :: (a -> a -> a) -> OpenPath a -> a #

toList :: OpenPath a -> [a] #

null :: OpenPath a -> Bool #

length :: OpenPath a -> Int #

elem :: Eq a => a -> OpenPath a -> Bool #

maximum :: Ord a => OpenPath a -> a #

minimum :: Ord a => OpenPath a -> a #

sum :: Num a => OpenPath a -> a #

product :: Num a => OpenPath a -> a #

Traversable OpenPath Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

traverse :: Applicative f => (a -> f b) -> OpenPath a -> f (OpenPath b) #

sequenceA :: Applicative f => OpenPath (f a) -> f (OpenPath a) #

mapM :: Monad m => (a -> m b) -> OpenPath a -> m (OpenPath b) #

sequence :: Monad m => OpenPath (m a) -> m (OpenPath a) #

Show a => Show (OpenPath a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

showsPrec :: Int -> OpenPath a -> ShowS #

show :: OpenPath a -> String #

showList :: [OpenPath a] -> ShowS #

Semigroup (OpenPath a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

(<>) :: OpenPath a -> OpenPath a -> OpenPath a #

sconcat :: NonEmpty (OpenPath a) -> OpenPath a #

stimes :: Integral b => b -> OpenPath a -> OpenPath a #

Monoid (OpenPath a) Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Methods

mempty :: OpenPath a #

mappend :: OpenPath a -> OpenPath a -> OpenPath a #

mconcat :: [OpenPath a] -> OpenPath a #

Num a => AffineTransform (OpenPath a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

class AffineTransform a b | a -> b where Source #

Methods

transform :: Transform b -> a -> a Source #

Instances
Num a => AffineTransform (Polygon a) a Source # 
Instance details

Defined in Geom2D

Methods

transform :: Transform a -> Polygon a -> Polygon a Source #

Num a => AffineTransform (Transform a) a Source # 
Instance details

Defined in Geom2D

Num a => AffineTransform (Point a) a Source # 
Instance details

Defined in Geom2D

Methods

transform :: Transform a -> Point a -> Point a Source #

Num a => AffineTransform (ClosedPath a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Num a => AffineTransform (OpenPath a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Num a => AffineTransform (PathJoin a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Num a => AffineTransform (QuadBezier a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

Num a => AffineTransform (CubicBezier a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Basic

(Floating a, Eq a) => AffineTransform (Pen a) a Source # 
Instance details

Defined in Geom2D.CubicBezier.Stroke

Methods

transform :: Transform a -> Pen a -> Pen a Source #

anyToCubic :: Unbox a => AnyBezier a -> Maybe (CubicBezier a) Source #

safely convert from AnyBezier to CubicBezier

anyToQuad :: Unbox a => AnyBezier a -> Maybe (QuadBezier a) Source #

safely convert from AnyBezier to QuadBezier

openPathCurves :: Fractional a => OpenPath a -> [CubicBezier a] Source #

Return the open path as a list of curves.

closedPathCurves :: Fractional a => ClosedPath a -> [CubicBezier a] Source #

Return the closed path as a list of curves

curvesToOpen :: [CubicBezier a] -> OpenPath a Source #

Make an open path from a list of curves. The last control point of each curve except the last is ignored.

curvesToClosed :: [CubicBezier a] -> ClosedPath a Source #

Make an open path from a list of curves. The last control point of each curve is ignored.

consOpenPath :: Point a -> PathJoin a -> OpenPath a -> OpenPath a Source #

construct an open path

consClosedPath :: Point a -> PathJoin a -> ClosedPath a -> ClosedPath a Source #

construct a closed path

openClosedPath :: ClosedPath a -> OpenPath a Source #

open a closed path

closeOpenPath :: OpenPath a -> ClosedPath a Source #

close an open path, discarding the last point

bezierParam :: (Ord a, Num a) => a -> Bool Source #

Return True if the param lies on the curve, iff it's in the interval [0, 1].

bezierParamTolerance :: GenericBezier b => b Double -> Double -> Double Source #

Convert a tolerance from the codomain to the domain of the bezier curve, by dividing by the maximum velocity on the curve. The estimate is conservative, but holds for any value on the curve.

reorient :: (GenericBezier b, Unbox a) => b a -> b a Source #

Reorient to the curve B(1-t).

bezierToBernstein :: (GenericBezier b, Unbox a) => b a -> (BernsteinPoly a, BernsteinPoly a) Source #

Give the bernstein polynomial for each coordinate.

evalBezierDerivs :: (GenericBezier b, Unbox a, Fractional a) => b a -> a -> [Point a] Source #

Evaluate the bezier and all its derivatives using the modified horner algorithm.

evalBezier :: (GenericBezier b, Unbox a, Fractional a) => b a -> a -> Point a Source #

Calculate a value on the bezier curve.

evalBezierDeriv :: (Unbox a, Fractional a) => GenericBezier b => b a -> a -> (Point a, Point a) Source #

Calculate a value and the first derivative on the curve.

findBezierTangent :: DPoint -> CubicBezier Double -> [Double] Source #

findBezierTangent p b finds the parameters where the tangent of the bezier curve b has the same direction as vector p.

quadToCubic :: Fractional a => QuadBezier a -> CubicBezier a Source #

Convert a quadratic bezier to a cubic bezier.

bezierHoriz :: CubicBezier Double -> [Double] Source #

Find the parameter where the bezier curve is horizontal.

bezierVert :: CubicBezier Double -> [Double] Source #

Find the parameter where the bezier curve is vertical.

findBezierInflection :: CubicBezier Double -> [Double] Source #

Find inflection points on the curve. Use the formula B_x''(t) * B_y'(t) - B_y''(t) * B_x'(t) = 0 with B_x'(t) the x value of the first derivative at t, B_y''(t) the y value of the second derivative at t

findBezierCusp :: CubicBezier Double -> [Double] Source #

Find the cusps of a bezier.

bezierArc :: Double -> Double -> CubicBezier Double Source #

bezierArc startAngle endAngle approximates an arc on the unit circle with a single cubic béziér curve. Maximum deviation is <0.03% for arcs 90° degrees or less.

arcLength :: CubicBezier Double -> Double -> Double -> Double Source #

@arcLength c t tol finds the arclength of the bezier c at t, within given tolerance tol.

arcLengthParam :: CubicBezier Double -> Double -> Double -> Double Source #

arcLengthParam c len tol finds the parameter where the curve c has the arclength len, within tolerance tol.

splitBezier :: (Unbox a, Fractional a) => GenericBezier b => b a -> a -> (b a, b a) Source #

Split a bezier curve into two curves.

bezierSubsegment :: (Ord a, Unbox a, Fractional a) => GenericBezier b => b a -> a -> a -> b a Source #

Return the subsegment between the two parameters.

splitBezierN :: (Ord a, Unbox a, Fractional a) => GenericBezier b => b a -> [a] -> [b a] Source #

Split a bezier curve into a list of beziers The parameters should be in ascending order or the result is unpredictable.

colinear :: CubicBezier Double -> Double -> Bool Source #

Return False if some points fall outside a line with a thickness of the given tolerance.

closest :: CubicBezier Double -> DPoint -> Double -> Double Source #

Find the closest value on the bezier to the given point, within tolerance. Return the first value found.

findX :: CubicBezier Double -> Double -> Double -> Double Source #

Find the x value of the cubic bezier. The bezier must be monotonically increasing in the X coordinate.