{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE BangPatterns, DeriveFunctor #-}
module Geom2D.CubicBezier.MetaPath
(unmetaOpen, unmetaClosed, ClosedMetaPath(..), OpenMetaPath (..),
MetaJoin (..), MetaNodeType (..), Tension (..))
where
import Geom2D
import Geom2D.CubicBezier.Basic
import Data.List
import Text.Printf
import qualified Data.Vector.Unboxed as V
import Geom2D.CubicBezier.Numeric
data OpenMetaPath a = OpenMetaPath [(Point a, MetaJoin a)] (Point a)
deriving (Functor, Traversable, Foldable)
data ClosedMetaPath a = ClosedMetaPath [(Point a, MetaJoin a)]
deriving (Eq, Functor, Traversable, Foldable)
data MetaJoin a = MetaJoin { metaTypeL :: MetaNodeType a
, tensionL :: Tension a
, tensionR :: Tension a
, metaTypeR :: MetaNodeType a
}
| Controls (Point a) (Point a)
deriving (Show, Eq, Functor, Traversable, Foldable)
data MetaNodeType a = Open
| Curl {curlgamma :: a}
| Direction {nodedir :: Point a}
deriving (Eq, Show, Functor, Foldable, Traversable)
data Tension a = Tension {tensionValue :: a}
| TensionAtLeast {tensionValue :: a}
deriving (Eq, Show, Functor, Foldable, Traversable)
instance (Show a, Real a) => Show (ClosedMetaPath a) where
show (ClosedMetaPath nodes) =
showPath nodes ++ "cycle"
instance (Show a, Real a) => Show (OpenMetaPath a) where
show (OpenMetaPath nodes lastpoint) =
showPath nodes ++ showPoint lastpoint
showPath :: (Show a, Real a) => [(Point a, MetaJoin a)] -> String
showPath = concatMap showNodes
where
showNodes (p, Controls u v) =
showPoint p ++ "..controls " ++ showPoint u ++ "and " ++ showPoint v ++ ".."
showNodes (p, MetaJoin m1 t1 t2 m2) =
showPoint p ++ typename m1 ++ ".." ++ tensions ++ typename m2
where
tensions
| t1 == t2 && t1 == Tension 1 = ""
| t1 == t2 = printf "tension %s.." (showTension t1)
| otherwise = printf "tension %s and %s.."
(showTension t1) (showTension t2)
showTension (TensionAtLeast t) = printf "atleast %.3f" (realToFrac t :: Double) :: String
showTension (Tension t) = printf "%.3f" (realToFrac t :: Double) :: String
typename Open = ""
typename (Curl g) = printf "{curl %.3f}" (realToFrac g :: Double) :: String
typename (Direction dir) = printf "{%s}" (showPoint dir) :: String
showPoint :: Show a => Point a -> String
showPoint (Point x y) = "(" ++ show x ++ ", " ++ show y ++ ")"
unmetaOpen :: OpenMetaPath Double -> OpenPath Double
unmetaOpen (OpenMetaPath nodes endpoint) =
unmetaOpen' (flip sanitize endpoint $
removeEmptyDirs nodes)
endpoint
unmetaOpen' :: [(DPoint, MetaJoin Double)] -> DPoint -> OpenPath Double
unmetaOpen' nodes endpoint =
let subsegs = openSubSegments nodes endpoint
path = joinSegments $ map unmetaSubSegment subsegs
in OpenPath path endpoint
unmetaClosed :: ClosedMetaPath Double -> ClosedPath Double
unmetaClosed (ClosedMetaPath nodes) =
case spanList bothOpen (removeEmptyDirs nodes) of
([], []) -> error "empty metapath"
(l, []) -> if fst (last l) == fst (head l)
then unmetaAsOpen l []
else unmetaCyclic l
(l, m:n) ->
if leftOpen (m:n)
then unmetaAsOpen (l++[m]) n
else unmetaAsOpen l (m:n)
unmetaAsOpen :: [(DPoint, MetaJoin Double)] -> [(DPoint, MetaJoin Double)] -> ClosedPath Double
unmetaAsOpen l m = ClosedPath (l'++m')
where n = length m
OpenPath o _ =
unmetaOpen' (sanitizeCycle (m++l)) (fst $ head (m ++l))
(m',l') = splitAt n o
openSubSegments :: [(DPoint, MetaJoin Double)] -> DPoint -> [OpenMetaPath Double]
openSubSegments [] _ = []
openSubSegments l lastPoint =
case spanList (not . breakPoint) l of
(m, n:o) ->
let point = case o of
((p,_):_) -> p
_ -> lastPoint
in OpenMetaPath (m ++ [n]) point :
openSubSegments o lastPoint
_ -> error "openSubSegments': unexpected end of segments"
joinSegments :: [OpenPath Double] -> [(DPoint, PathJoin Double)]
joinSegments = concatMap nodes
where nodes (OpenPath n _) = n
unmetaCyclic :: [(DPoint, MetaJoin Double)] -> ClosedPath Double
unmetaCyclic nodes =
let points = map fst nodes
chords = zipWith (^-^) (tail $ cycle points) points
tensionsA = map (tensionL . snd) nodes
tensionsB = map (tensionR . snd) nodes
turnAngles = zipWith turnAngle chords (tail $ cycle chords)
thetas = solveCyclicTriD2 $
eqsCycle tensionsA
points
tensionsB
turnAngles
phis = zipWith (\x y -> -(x+y)) turnAngles (tail $ cycle thetas)
in ClosedPath $ zip points $
zipWith6 unmetaJoin points (tail $ cycle points)
thetas phis tensionsA tensionsB
unmetaSubSegment :: OpenMetaPath Double -> OpenPath Double
unmetaSubSegment (OpenMetaPath [(p, Controls u v)] q) =
OpenPath [(p, JoinCurve u v)] q
unmetaSubSegment (OpenMetaPath nodes lastpoint) =
let points = map fst nodes ++ [lastpoint]
joins = map snd nodes
chords = zipWith (^-^) (tail points) points
tensionsA = map tensionL joins
tensionsB = map tensionR joins
turnAngles = zipWith turnAngle chords (tail chords) ++ [0]
thetas = solveTriDiagonal2 $
eqsOpen points joins chords turnAngles
(map tensionValue tensionsA)
(map tensionValue tensionsB)
phis = zipWith (\x y -> -(x+y)) turnAngles (tail thetas)
pathjoins =
zipWith6 unmetaJoin points (tail points) thetas phis tensionsA tensionsB
in OpenPath (zip points pathjoins) lastpoint
removeEmptyDirs :: [(DPoint, MetaJoin Double)] -> [(DPoint, MetaJoin Double)]
removeEmptyDirs = map remove
where remove (p, MetaJoin (Direction (Point 0 0)) tl tr jr) = remove (p, MetaJoin Open tl tr jr)
remove (p, MetaJoin jl tl tr (Direction (Point 0 0))) = (p, MetaJoin jl tl tr Open)
remove j = j
bothOpen :: [(DPoint, MetaJoin Double)] -> Bool
bothOpen ((p, MetaJoin Open _ _ Open):(q, _):_) = p /= q
bothOpen [(_, MetaJoin Open _ _ Open)] = True
bothOpen _ = False
leftOpen :: [(DPoint, MetaJoin Double)] -> Bool
leftOpen ((p, MetaJoin Open _ _ _):(q, _):_) = p /= q
leftOpen [(_, MetaJoin Open _ _ _)] = True
leftOpen _ = False
sanitizeCycle :: [(DPoint, MetaJoin Double)] -> [(DPoint, MetaJoin Double)]
sanitizeCycle [] = []
sanitizeCycle l = take n $ tail $
sanitize (drop (n-1) $ cycle l) (fst $ head l)
where n = length l
sanitize :: [(DPoint, MetaJoin Double)] -> DPoint -> [(DPoint, MetaJoin Double)]
sanitize [] _ = []
sanitize [(p, MetaJoin m t1 t2 Open)] r =
if p == r
then [(p, Controls p p)]
else [(p, MetaJoin m t1 t2 (Curl 1))]
sanitize ((p, MetaJoin m1 tl tr Open): rest@(node2:node3:_)) r
| (fst node2 == fst node3) && (metaTypeL (snd node2) == Open) =
(p, MetaJoin m1 tl tr (Curl 1)) : sanitize rest r
sanitize (node1@(p, MetaJoin m1 tl tr m2): node2@(q, MetaJoin n1 sl sr n2): rest) r
| p == q =
let newnode = (p, Controls p p)
in case (m2, n1) of
(Curl g, Open) ->
newnode : sanitize ((q, MetaJoin (Curl g) sl sr n2):rest) r
(Direction dir, Open) ->
newnode : sanitize ((q, MetaJoin (Direction dir) sl sr n2) : rest) r
(Open, Open) ->
newnode : sanitize ((q, MetaJoin (Curl 1) sl sr n2) : rest) r
_ -> newnode : sanitize (node2:rest) r
| otherwise =
case (m2, n1) of
(Curl g, Open) ->
node1 : sanitize ((q, MetaJoin (Curl g) sl sr n2):rest) r
(Open, Curl g) ->
(p, MetaJoin m1 tl tr (Curl g)) : sanitize (node2:rest) r
(Direction dir, Open) ->
node1 : sanitize ((q, MetaJoin (Direction dir) sl sr n2) : rest) r
(Open, Direction dir) ->
(p, MetaJoin m1 tl tr (Direction dir)) : sanitize (node2:rest) r
_ -> node1 : sanitize (node2:rest) r
sanitize ((p, m): (q, n): rest) r =
case (m, n) of
(Controls _u v, MetaJoin Open t1 t2 mt2)
| q == v -> (p, m) : sanitize ((q, MetaJoin (Curl 1) t1 t2 mt2): rest) r
| otherwise -> (p, m) : sanitize ((q, MetaJoin (Direction (q^-^v)) t1 t2 mt2): rest) r
(MetaJoin mt1 tl tr Open, Controls u _v)
| u == p -> (p, MetaJoin mt1 tl tr (Curl 1)) : sanitize ((q, n): rest) r
| otherwise -> (p, MetaJoin mt1 tl tr (Direction (u^-^p))) : sanitize ((q, n): rest) r
_ -> (p, m) : sanitize ((q, n) : rest) r
sanitize (n:l) r = n:sanitize l r
spanList :: ([a] -> Bool) -> [a] -> ([a], [a])
spanList _ xs@[] = (xs, xs)
spanList p xs@(x:xs')
| p xs = let (ys,zs) = spanList p xs' in (x:ys,zs)
| otherwise = ([],xs)
breakPoint :: [(DPoint, MetaJoin Double)] -> Bool
breakPoint ((_, MetaJoin _ _ _ Open):(_, MetaJoin Open _ _ _):_) = False
breakPoint _ = True
solveTriDiagonal2 :: [(Double, Double, Double, Double)] -> [Double]
solveTriDiagonal2 [] = error "solveTriDiagonal: not enough equations"
solveTriDiagonal2 ((_, b0, c0, d0): rows) =
V.toList $ solveTriDiagonal (b0, c0, d0) (V.fromList rows)
solveCyclicTriD2 :: [(Double, Double, Double, Double)] -> [Double]
solveCyclicTriD2 = V.toList . solveCyclicTriD . V.fromList
turnAngle :: DPoint -> DPoint -> Double
turnAngle (Point 0 0) _ = 0
turnAngle (Point x y) q = vectorAngle $ rotateVec p $* q
where p = Point x (-y)
zipNext :: [b] -> [(b, b)]
zipNext [] = []
zipNext l = zip l (tail $ cycle l)
eqsCycle :: [Tension Double] -> [DPoint] -> [Tension Double]
-> [Double] -> [(Double, Double, Double, Double)]
eqsCycle tensionsA points tensionsB turnAngles =
zipWith4 eqTension
(zipNext (map tensionValue tensionsA))
(zipNext dists)
(zipNext turnAngles)
(zipNext (map tensionValue tensionsB))
where
dists = zipWith vectorDistance points (tail $ cycle points)
eqsOpen :: [DPoint] -> [MetaJoin Double] -> [DPoint] -> [Double]
-> [Double] -> [Double] -> [(Double, Double, Double, Double)]
eqsOpen _ [MetaJoin mt1 t1 t2 mt2] [delta] _ _ _ =
let replaceType Open = Curl 1
replaceType t = t
in case (replaceType mt1, replaceType mt2) of
(Curl g, Direction dir) ->
[eqCurl0 g (tensionValue t1) (tensionValue t2) 0,
(0, 1, 0, turnAngle delta dir)]
(Direction dir, Curl g) ->
[(0, 1, 0, turnAngle delta dir),
eqCurlN g (tensionValue t1) (tensionValue t2)]
(Direction dir, Direction dir2) ->
[(0, 1, 0, turnAngle delta dir),
(0, 1, 0, turnAngle delta dir2)]
(Curl _, Curl _) ->
[(0, 1, 0, 0), (0, 1, 0, 0)]
_ -> error "illegal end of open path"
eqsOpen points joins chords turnAngles tensionsA tensionsB =
eq0 : restEquations joins tensionsA dists turnAngles tensionsB
where
dists = zipWith vectorDistance points (tail points)
eq0 = case head joins of
(MetaJoin (Curl g) _ _ _) -> eqCurl0 g (head tensionsA) (head tensionsB) (head turnAngles)
(MetaJoin (Direction dir) _ _ _) -> (0, 1, 0, turnAngle (head chords) dir)
(MetaJoin Open _ _ _) -> eqCurl0 1 (head tensionsA) (head tensionsB) (head turnAngles)
(Controls _ _) -> error "eqsOpen: illegal join"
restEquations [lastnode] (tensionA:_) _ _ (tensionB:_) =
case lastnode of
MetaJoin _ _ _ (Curl g) -> [eqCurlN g tensionA tensionB]
MetaJoin _ _ _ Open -> [eqCurlN 1 tensionA tensionB]
MetaJoin _ _ _ (Direction dir) -> [(0, 1, 0, turnAngle (last chords) dir)]
(Controls _ _) -> error "eqsOpen: illegal join"
restEquations (_:othernodes) (tensionA:restTA) (d:restD) (turn:restTurn) (tensionB:restTB) =
eqTension (tensionA, head restTA) (d, head restD) (turn, head restTurn) (tensionB, head restTB) :
restEquations othernodes restTA restD restTurn restTB
restEquations _ _ _ _ _ = error "eqsOpen: illegal rest equations"
eqTension :: (Double, Double) -> (Double, Double)
-> (Double, Double) -> (Double, Double)
-> (Double, Double, Double, Double)
eqTension (tensionA', tensionA) (dist', dist) (psi', psi) (tensionB', tensionB) =
(a, b+c, d, -b*psi' - d*psi)
where
a = tensionB' * tensionB' / (tensionA' * dist')
b = (3 - 1/tensionA') * tensionB' * tensionB' / dist'
c = (3 - 1/tensionB) * tensionA * tensionA / dist
d = tensionA * tensionA / (tensionB * dist)
eqCurl0 :: Double -> Double -> Double -> Double
-> (Double, Double, Double, Double)
eqCurl0 gamma tensionA tensionB psi = (0, c, d, r)
where
c = chi/tensionA + 3 - 1/tensionB
d = (3 - 1/tensionA)*chi + 1/tensionB
chi = gamma*tensionB*tensionB / (tensionA*tensionA)
r = -d*psi
eqCurlN :: Double -> Double -> Double
-> (Double, Double, Double, Double)
eqCurlN gamma tensionA tensionB = (a, b, 0, 0)
where
a = (3 - 1/tensionB)*chi + 1/tensionA
b = chi/tensionB + 3 - 1/tensionA
chi = gamma*tensionA*tensionA / (tensionB*tensionB)
unmetaJoin :: DPoint -> DPoint -> Double -> Double -> Tension Double
-> Tension Double -> PathJoin Double
unmetaJoin !z0 !z1 !theta !phi !alpha !beta
| abs phi < 1e-4 && abs theta < 1e-4 = JoinLine
| otherwise = JoinCurve u v
where Point dx dy = z1^-^z0
bounded = (sf <= 0 && st <= 0 && sf <= 0) ||
(sf >= 0 && st >= 0 && sf >= 0)
rr' = velocity st sf ct cf alpha
ss' = velocity sf st cf ct beta
stf = st*cf + sf*ct
st = sin theta
sf = sin phi
ct = cos theta
cf = cos phi
rr = case alpha of
TensionAtLeast _ | bounded ->
min rr' (sf/stf)
_ -> rr'
ss = case beta of
TensionAtLeast _ | bounded ->
min ss' (st/stf)
_ -> ss'
u = z0 ^+^ rr *^ Point (dx*ct - dy*st) (dy*ct + dx*st)
v = z1 ^-^ ss *^ Point (dx*cf + dy*sf) (dy*cf - dx*sf)
constant1, constant2, sqrt2 :: Double
constant1 = 3*(sqrt 5 - 1)/2
constant2 = 3*(3 - sqrt 5)/2
sqrt2 = sqrt 2
velocity :: Double -> Double -> Double
-> Double -> Tension Double -> Double
velocity st sf ct cf t =
min 4 $
(2 + sqrt2 * (st - sf/16)*(sf - st/16)*(ct - cf)) /
((3 + constant1*ct + constant2*cf) * tensionValue t)