{-# LANGUAGE TypeOperators, TypeFamilies, GADTs, FlexibleContexts, ScopedTypeVariables, RankNTypes, NoImplicitPrelude #-}
module Data.Category.Adjunction (
Adjunction(..)
, mkAdjunction
, mkAdjunctionUnits
, leftAdjunct
, rightAdjunct
, adjunctionUnit
, adjunctionCounit
, idAdj
, composeAdj
, AdjArrow(..)
, initialPropAdjunction
, terminalPropAdjunction
, adjunctionInitialProp
, adjunctionTerminalProp
, precomposeAdj
, postcomposeAdj
, contAdj
) where
import Data.Category
import Data.Category.Functor
import Data.Category.Product
import Data.Category.NaturalTransformation
import Data.Category.RepresentableFunctor
data Adjunction c d f g = (Functor f, Functor g, Category c, Category d, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
=> Adjunction
{ leftAdjoint :: f
, rightAdjoint :: g
, leftAdjunctN :: Profunctors c d (Costar f) (Star g)
, rightAdjunctN :: Profunctors c d (Star g) (Costar f)
}
mkAdjunction :: (Functor f, Functor g, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
=> f -> g
-> (forall a b. Obj d a -> c (f :% a) b -> d a (g :% b))
-> (forall a b. Obj c b -> d a (g :% b) -> c (f :% a) b)
-> Adjunction c d f g
mkAdjunction f g l r = Adjunction f g (Nat (costar f) (star g) (\(Op a :**: _) -> l a)) (Nat (star g) (costar f) (\(_ :**: b) -> r b))
mkAdjunctionUnits :: (Functor f, Functor g, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
=> f -> g
-> (forall a. Obj d a -> Component (Id d) (g :.: f) a)
-> (forall a. Obj c a -> Component (f :.: g) (Id c) a)
-> Adjunction c d f g
mkAdjunctionUnits f g un coun = mkAdjunction f g (\a h -> (g % h) . un a) (\b h -> coun b . (f % h))
leftAdjunct :: Adjunction c d f g -> Obj d a -> c (f :% a) b -> d a (g :% b)
leftAdjunct (Adjunction _ _ l _) a h = (l ! (Op a :**: tgt h)) h
rightAdjunct :: Adjunction c d f g -> Obj c b -> d a (g :% b) -> c (f :% a) b
rightAdjunct (Adjunction _ _ _ r) b h = (r ! (Op (src h) :**: b)) h
adjunctionUnit :: Adjunction c d f g -> Nat d d (Id d) (g :.: f)
adjunctionUnit adj@(Adjunction f g _ _) = Nat Id (g :.: f) (\a -> leftAdjunct adj a (f % a))
adjunctionCounit :: Adjunction c d f g -> Nat c c (f :.: g) (Id c)
adjunctionCounit adj@(Adjunction f g _ _) = Nat (f :.: g) Id (\b -> rightAdjunct adj b (g % b))
adjunctionInitialProp :: Adjunction c d f g -> Obj d y -> InitialUniversal y g (f :% y)
adjunctionInitialProp adj@(Adjunction f g _ _) y = initialUniversal g (f % y) (adjunctionUnit adj ! y) (rightAdjunct adj)
adjunctionTerminalProp :: Adjunction c d f g -> Obj c x -> TerminalUniversal x f (g :% x)
adjunctionTerminalProp adj@(Adjunction f g _ _) x = terminalUniversal f (g % x) (adjunctionCounit adj ! x) (leftAdjunct adj)
initialPropAdjunction :: forall f g c d. (Functor f, Functor g, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
=> f -> g -> (forall y. Obj d y -> InitialUniversal y g (f :% y)) -> Adjunction c d f g
initialPropAdjunction f g univ = mkAdjunctionUnits f g
(universalElement . univ)
(\a -> represent (univ (g % a)) a (g % a))
terminalPropAdjunction :: forall f g c d. (Functor f, Functor g, Dom f ~ d, Cod f ~ c, Dom g ~ c, Cod g ~ d)
=> f -> g -> (forall x. Obj c x -> TerminalUniversal x f (g :% x)) -> Adjunction c d f g
terminalPropAdjunction f g univ = mkAdjunctionUnits f g
(\a -> unOp (represent (univ (f % a)) (Op a) (f % a)))
(universalElement . univ)
idAdj :: Category k => Adjunction k k (Id k) (Id k)
idAdj = mkAdjunction Id Id (\_ f -> f) (\_ f -> f)
composeAdj :: Adjunction d e f g -> Adjunction c d f' g' -> Adjunction c e (f' :.: f) (g :.: g')
composeAdj l@(Adjunction f g _ _) r@(Adjunction f' g' _ _) = mkAdjunction (f' :.: f) (g :.: g')
(\a -> leftAdjunct l a . leftAdjunct r (f % a)) (\b -> rightAdjunct r b . rightAdjunct l (g' % b))
data AdjArrow c d where
AdjArrow :: (Category c, Category d) => Adjunction c d f g -> AdjArrow (CatW c) (CatW d)
instance Category AdjArrow where
src (AdjArrow (Adjunction _ _ _ _)) = AdjArrow idAdj
tgt (AdjArrow (Adjunction _ _ _ _)) = AdjArrow idAdj
AdjArrow x . AdjArrow y = AdjArrow (composeAdj x y)
precomposeAdj :: Category e => Adjunction c d f g -> Adjunction (Nat c e) (Nat d e) (Precompose g e) (Precompose f e)
precomposeAdj adj@(Adjunction f g _ _) = mkAdjunctionUnits
(precompose g)
(precompose f)
(\nh@(Nat h _ _) -> compAssocInv h g f . (nh `o` adjunctionUnit adj) . idPrecompInv h)
(\nh@(Nat h _ _) -> idPrecomp h . (nh `o` adjunctionCounit adj) . compAssoc h f g)
postcomposeAdj :: Category e => Adjunction c d f g -> Adjunction (Nat e c) (Nat e d) (Postcompose f e) (Postcompose g e)
postcomposeAdj adj@(Adjunction f g _ _) = mkAdjunctionUnits
(postcompose f)
(postcompose g)
(\nh@(Nat h _ _) -> compAssoc g f h . (adjunctionUnit adj `o` nh) . idPostcompInv h)
(\nh@(Nat h _ _) -> idPostcomp h . (adjunctionCounit adj `o` nh) . compAssocInv f g h)
contAdj :: Adjunction (Op (->)) (->) (Opposite ((->) :-*: r) :.: OpOpInv (->)) ((->) :-*: r)
contAdj = mkAdjunction
(Opposite (hom_X (\x -> x)) :.: OpOpInv)
(hom_X (\x -> x))
(\_ -> \(Op f) -> \b a -> f a b)
(\_ -> \f -> Op (\b a -> f a b))